
EUDAQ User Manual

EUDET

EUDAQ User Manual

EUDAQ Development Team

Last update on October 2016
for EUDAQ version v1.7

This document provides an overview of the EUDAQ software framework, the
data acquisition framework used also by the EUDET-type beam telescopes [1].
It describes how to install and run the DAQ system and use many of the
included utility programs, and how users may integrate their DAQ systems into
the EUDAQ framework by writing their own Producer – for integrating the
data stream into the acquisition – and DataConverterPlugin – for converting
data for offline analysis (e.g. the EUTelescope analysis framework).

1

EUDAQ User Manual Contents

Contents

1. License 4

2. Introduction 5
2.1. Architecture . 5
2.2. Directory and File Structure . 6

3. Installing EUDAQ 8
3.1. Installation of prerequisites . 8
3.2. Download the source code from GitHub 11
3.3. Configuration via CMake . 11
3.4. Compilation . 13

4. Running EUDAQ 15
4.1. Preparation . 15
4.2. Processes . 18
4.3. Running the DAQ . 24
4.4. Other Utilities . 26

5. Writing a Producer 37
5.1. Configuration . 37
5.2. Receiving Commands . 37
5.3. Sending Data and the RawDataEvent class 39
5.4. Log Messages . 40
5.5. Interfacing Python-Code via the PyProducer Interface 41

6. Data Conversion 42
6.1. StandardEvent and StandardPlane . 42
6.2. LCIO and LCEvent . 46
6.3. DataConverterPlugin . 47

7. Other Parts of the Framework 49
7.1. FileWriter . 49
7.2. FileReader . 49
7.3. PluginManager . 50
7.4. OptionParser . 51
7.5. Timer . 54
7.6. Utils . 54

8. Reporting Issues 56

9. Developing and Contributing to EUDAQ 57
9.1. Regression Testing . 57
9.2. Commiting Code to the Main Repository 57

A. Source Code 59
A.1. Example Config File . 59

2

EUDAQ User Manual Contents

A.2. Example Producer . 60
A.3. Example DataConverterPlugin . 67
A.4. Example Reader . 70

B. Introduction to the build system and project files on Windows 72
B.1. MSBUILD . 72
B.2. Project Files . 72
B.3. Known Problems . 75

C. Online Monitor Configuration Settings 76
C.1. Configuration Sections Overview . 76
C.2. Configuration options in [General] . 76
C.3. Configuration options in [Correlations] 76
C.4. Configuration options in [Clusterizer] . 76
C.5. Configuration options in [HotPixelFinder] 76
C.6. Configuration options in [Mimosa26] . 76
C.7. Configuration Example . 77

Glossary 78

3

EUDAQ User Manual 1. License

1. License

This program is free software: you can redistribute it and/or modify it under the terms
of the Lesser GNU General Public License as published by the Free Software Foundation,
either version 3 of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the Lesser GNU General Public License for more
details.
You should have received a copy of the Lesser GNU General Public License along with
this program. If not, see http://www.gnu.org/licenses/.

4

http://www.gnu.org/licenses/

EUDAQ User Manual 2. Introduction

2. Introduction

The EUDAQ software is a data acquisition framework, written in C++, and designed to
be modular and portable, running on Linux, Mac OS X, and Windows. It was written
primarily to run the EUDET-type beam telescope [2, 3], but is designed to be generally
useful for other systems.
The hardware-specific parts are kept separate from the core, so that the core library can
still be used independently. For example, hardware-specific parts are two components
for the EUDET-type beam telescope: the Trigger Logic Unit (TLU) and the National
Instrument system (NI) for Mimosa 26 sensor read out.
The raw data files generated by the DAQ can be converted to the Linear Collider I/O
(LCIO) format, allowing for analysing the data using the EUTelescope package [4].

2.1. Architecture

It is split into a number of different processes, each communicating using TCP/IP sockets
(compare Figure 1). A central Run Control provides an interface for controlling the whole
DAQ system; other processes connect to the Run Control to receive commands and to
report their status.

Figure 1: Schematic of the EUDAQ architecture [5].

Each hardware that produces data (e.g. the TLU, the NI, or a device under test (DUT))
will have a Producer process (on the left in Figure 1). This will initialize, configure, stop
and start the hardware by receiving the commands from the Run Control (red arrows),
read out the data and send it to the Data Collector (blue arrows).

5

EUDAQ User Manual 2. Introduction

The Data Collector receives all the data streams from all the Producers, and combines
them into a single stream that is written to disk (Storage). It writes the data in a native
raw binary format, but it can be configured to write in other formats, such as LCIO.
The Log Collector receives log messages from all other processes (grey arrows), and
displays them to the user, as well as writing them all to file. This allows for easier
debugging, since all log messages are stored together in a central location.
The Monitor reads the data file and generates online-monitoring plots for display. In
the schematic it is shown to communicate with the Data Collector via a socket, but it
actually just reads the data file from disk.

2.2. Directory and File Structure

The EUDAQ software is split into several parts that can each be compiled independently,
and are kept in separate subdirectories. The general structure is outlined below:

• main contains the core EUDAQ library with the parts that are common to most of
the software, and several command-line programs that depend only on this library.
All definitions in the library should be inside the eudaq namespace. It is organised
into the following subdirectories:

– lib/src contains the library source code,

– exe/src contains the (command line) executables source code,

– include contains the header files inside the eudaq subdirectory (to match the
namespace),

• gui contains the graphical programs that are built with Qt, such as the RunControl
and LogCollector.

• producers contains all (user-provided) producers shipped with the EUDAQ distri-
bution, for example:

– tlu contain the parts that depend on the TLU.

– ni contain the parts that depend on the NI system for Mimosa 26 read out.

– e.g. depfet, fortis, taki. . . contain the code for third-party producers that
have been used with EUDET-type beam telescopes.

• extern stores external software that is not part of EUDAQ itself, but that is needed
by EUDAQ in some cases, such as the ZestSC1 driver and the tlufirmware for
the TLU.

• bin and lib contain the compiled binaries (executables and libraries) generated
from the other directories.

• conf contains configuration files for running the beam telescope.

• data and logs are directories for storing the data and log files generated while
running the DAQ.

• doc contains documentation, such as this manual.

6

EUDAQ User Manual 2. Introduction

Each directory containing code has its own src and include subdirectories, as well as a
local CMakeLists.txt file containing the rules for building that directory using CMake.
Header files usually have a .hh extension so that they can be automatically recognised
as C++ (as opposed to C), and source files have either .cc for parts of a library or .cxx
for executables.
Each directory can contain a README.md file for brief documentation for this specific part,
e.g. as installation advice. Using the *.md file ending allows for applying the Markdown
language [6]. Accordingly, content will be formatted on the the GitHub platform, where
the code is hosted online.

7

EUDAQ User Manual 3. Installing EUDAQ

3. Installing EUDAQ

The installation is described in four steps:1

1. Installation of (required) prerequisites

2. Downloading the source code (GitHub)

3. Configuration of the code (CMake)

4. Compilation of the code

If you occur problems during the installation process, please have a look into the issue
tracker on GitHub.2 Here you can search, if your problem had already been experienced
by someone else, or you can open a new issue (see section 8).

3.1. Installation of prerequisites

EUDAQ has few dependencies on other software, but some features do rely on other
packages:

• To get the code and stay updated with the central repository on GitHub git is
used.

• To configure the EUDAQ build process, the CMake cross-platform, open-source
build system is used.

• To compile EUDAQ from source code requires a compiler that implements the
C++11 standard.

• The libusb library is needed to communicate over USB with a TLU [7].

• Qt is required to build GUIs of the e.g. Run Control Log Collector.

• ROOT is required for the Online Monitor.

3.1.1. Git

Git is a free and open source distributed version control and is available for all of the usual
platforms [8]. It allows for local version control and repositories, but also communicating
with central online repositories like GitHub.
In order to get the EUDAQ code and stay updated with the central repository on GitHub
git is used (see subsection 3.2). But also for developing the EUDAQ code having different
versions (tags) or branches (development repositories), git is used (see section 9).

1Quick installation instructions are also described on http://eudaq.github.io/ or in the main
README.md file of each branch, e.g. https://github.com/eudaq/eudaq/blob/v1.6-dev/README.

md.
2Go to https://github.com/eudaq/eudaq/issues

8

http://eudaq.github.io/
https://github.com/eudaq/eudaq/blob/v1.6-dev/README.md
https://github.com/eudaq/eudaq/blob/v1.6-dev/README.md
https://github.com/eudaq/eudaq/issues

EUDAQ User Manual 3. Installing EUDAQ

3.1.2. CMake (required)

In order to generate configuration files for building EUDAQ (makefiles) independently
from the compiler and the operating platform, the CMake build system is used.
CMake is available for all major operating systems from http://www.cmake.org/cmake/

resources/software.html. On most Linux distributions, it can usually be installed via
the built-in package manager (aptitude/apt-get/yum etc.) and on OSX using packages
provided by e.g. the MacPorts or Fink projects.

3.1.3. C++11 compliant compiler (required)

The compilation of the EUDAQ source code requires a C++11 complianti compiler and
has been tested with GCC (at least version 4.8), Clang (at least version 3.1), and MSVC
(Visual Studio 2012 and later) on Linux, OS X and Windows.
If you are using Scientific Linux, please install the Developer Toolset available e.g. from
http://linux.web.cern.ch/linux/devtoolset/ to get access to a GCC version which
fully implements C++11, e.g. on SL6 do

scl use devtoolset-1.1 bash

and cmake and install in this bash.

3.1.4. libusb (for the EUDET TLU)

In order to communicate over USB with a TLU, the libusb library is needed. Therefore,
if you want to compile the tlu subdirectory, you should make sure that libusb is properly
installed.
On Mac OS X, this can be installed using Fink or MacPorts. If using MacPorts you may
also need to install the libusb-compat package.
On Linux it may already be installed, otherwise you should use the built-in package
manager to install it. Make sure to get the development version, which may be named
libusb-devel instead of simply libusb, e.g. on Ubuntu:

sudo apt-get install libusb-dev

On Windows, libusb is only needed if compiling with cygwin, in which case you should
use the cygwin installer to install libusb. Otherwise libusb is not needed, as the included
ZestSC1 libraries should work as they are.

3.1.5. ZestSC1 drivers and TLU firmware files (for the EUDET TLU)

Additonally to the libusb library, the EUDET TLU producer requires the ZestSC1 driver
package and the FPGA firmware bitfiles. These are available to download via AFS from
DESY. If AFS is accessible on the machine when CMake is running, the necessary files
will be installed automatically. Otherwise, manually copy full folder with sub-directories
from

9

http://www.cmake.org/cmake/resources/software.html
http://www.cmake.org/cmake/resources/software.html
http://linux.web.cern.ch/linux/devtoolset/

EUDAQ User Manual 3. Installing EUDAQ

• /afs/desy.de/group/telescopes/tlu/ZestSC1 and

• /afs/desy.de/group/telescopes/tlu/tlufirmware

into the extern subfolder in your EUDAQ source directory.

3.1.6. Qt (for GUIs)

The graphical interface of EUDAQ uses the Qt graphical framework. In order to compile
the gui subdirectory, you must therefore have Qt installed. It is available in most Linux
distributions as the package qt4-devel or qt5-devel but make sure the version is at
least 4.4, since there are a few issues with earlier versions.
If the included version is too old, or on other platforms, it can be downloaded from
http://qt.nokia.com/downloads. Select the LGPL (free) version, then choose the
complete development environment (it may also work with just the framework, but this
is untested). Make sure the QTDIR environment variable is set to the Qt installation
directory, and the $QTDIR/bin directory is in your path.
If you are using OSX, the easiest way to install Qt is using the packages provided by the
MacPorts project (http://www.macports.org/).

3.1.7. ROOT (for Monitor)

The Online Monitor, as well as a few command-line utilities (contained in the root

subdirectory), use the ROOT package for histogramming. It can be downloaded from
http://root.cern.ch or installed via your favorite package manager.
Make sure ROOt’s bin subdirectory is in your path, so that the root-config utility can
be run. This can be done by sourcing the thisroot.sh (or thisroot.ch for csh-like
shells) script in the bin directory of the ROOT installation:

source /path-to/root/bin/thisroot.sh

3.1.8. LCIO / EUTelescope (for converting/analysis)

To enable the writing of LCIO files, or the conversion of native files to LCIO format,
EUDAQ must be linked against the LCIO and EUTelescope libraries. Detailed in-
structions on how to install both using the ilcinstall scripts can be found at http:

//eutelescope.web.cern.ch/content/installation.
The EUTELESCOPE and LCIO environment variables should be set to the installation
directories of EUTelescope and LCIO respectively. This can be done by sourcing the
build env.sh script as follows:

source /path-to/Eutelescope/build_env.sh

10

http://qt.nokia.com/downloads
http://www.macports.org/
http://root.cern.ch
http://eutelescope.web.cern.ch/content/installation
http://eutelescope.web.cern.ch/content/installation

EUDAQ User Manual 3. Installing EUDAQ

3.2. Download the source code from GitHub

The EUDAQ source code is hosted on GitHub [9]. Here, we describe how to get the code
and install a stable version release. In order to get information about the work flow of
developing the EUDAQ code, please find the relevant information in see section 9.

3.2.1. Downloading the code (clone)

We recommend to obtain the software by using git, since this will allow you to easily
update to newer versions. The source code can be downloaded with the following
command:

git clone https://github.com/eudaq/eudaq.git eudaq

This will create the directory eudaq, and download the latest version into it.
Note: Alternatively and without version control, you can also download a zip/tar.gz
file of EUDAQ releases (tags) from https://github.com/eudaq/eudaq/releases. By
downloading the code, you can skip the next two subsections.

3.2.2. Changing to a release version (checkout)

After cloning the code from GitHub, your local EUDAQ version is on the master branch
(check with git status). For using EUDAQ without development or for production
environments (e.g. at test beams), we strongly recommend to use the latest release
version. Use

git tag

in the repository to find the newest stable version as the last entry. In order to change
to this version in your local repository, execute e.g.

git checkout v1.6.0

to change to version v1.6.0.

3.2.3. Updating the code (fetch)

If you want to update your local code, e.g to get the newest release versions, execute in
the eudaq directory:

git fetch

and check for new versions with git tag.

3.3. Configuration via CMake

CMake supports out-of-source configurations and generates building files for compilation
(makefiles). Enter the build directory and run CMake, i.e.

11

https://github.com/eudaq/eudaq/releases

EUDAQ User Manual 3. Installing EUDAQ

cd build

cmake ..

CMake automatically searches for required packages and verifies that all dependencies
are met using the CMakeLists.txt scripts in the main folder and in all sub directories.
By default, only the central shared library, the main executables and (if Qt4 or Qt5 have
been found) the graphical user interface (GUI) are configured for compilation. You can
modify this default behavior by passing the -DBUILD [name] option to CMake where
[name] refers to an optional component, e.g.

cmake -DBUILD_gui=OFF -DBUILD_tlu=ON ..

to disable the GUI but enable additionally executables of the TLU producer. Find some
of the most important building options in Table 1.

option default comment
-DBUILD main ON Builds main EUDAQ executables. The common library, and

some command-line programs that depend on only this library
-DBUILD manual OFF Builds Manual in pdf-format. In Ubuntu e.g.: pdflatex,

scrartcl.cls and upquote.sty are required, thus
execute sudo apt-get install texlive-latex-base

texlive-latex-recommended texlive-latex-extra

-DBUILD tlu OFF Builds the TLU producer and command-line tools. libus,
ZestSC1 and tlufirmware files are required.

-DBUILD <producername> OFF -DBUILD <producername>=ON is needed to enable bulding of a
specific producer. The producername is the same as the name
of the producer’s directory in ./producer. These are user-
contributed producers for specific detectors operating with the
EUDET-type beam telescope. They should not be compiled
unless needed.

-DBUILD gui ON Builds GUI executables, such as the Run Control and Log
Collector. Requires QT4/5.

-DBUILD python ON Builds Python EUDAQ binding library.
-DBUILD pybindgen OFF Builds pybindgen binding libraries.
-DBUILD onlinemon ON Builds Online Monitor executable. Requires ROOT.
-DBUILD offlinemon OFF Builds offline monitor executable. Requires ROOT.
-DBUILD metamon OFF Builds MetaData Monitor executable.
-DBUILD resender OFF Builds resender producer.
-DBUILD nreader OFF Builds native reader Marlin processor used for data conversion

into LCIO. Requires LCIO/EUTelescope
-DINSTALL PREFIX=<PATH> <eudaq> In order to install the executables into bin and the

library into lib of a specific <path>, instead of into
the <eudaq> path. The corresponding de-installation
can be done by: cd <eudaq>build && sudo xargs rm <

install manifest.txt

Table 1: Some of the most important building options for CMake.

Note: After generating building files by running cmake .., you can list all possible option
and their status by running cmake -L. Using a GUI version of CMake shows also all of

12

EUDAQ User Manual 3. Installing EUDAQ

the possible options.
Corresponding settings are cached, thus they will be used again next time CMake is
running. If you encounter a problem during installation, it is recommended to clean the
cache by just removing all files from the build folder, since it only contains automatically
generated files. In order to start from scratch, just run:

cd build

rm -rf *

3.4. Compilation

3.4.1. Compilation on Linux/OSX

From the top EUDAQ directory, run the command

cd build

make install

in order to compile the common library with some command-line programs (the contents
of the ./main/exe subdirectory). If other parts are needed, you can specify them as
arguments to the CMake command during the configuration step (see 3.3).
The executable binaries and the common shared library will be installed by default
into the bin and lib directories in the source tree, respectively. If you would like to
install into a different location, please set the respective parameter during the CMake
configuration.

3.4.2. Setup and Compilation on Windows using Visual Studio

This section gives a short overview on the steps needed to compile the project under
Windows (tested under Windows 7, 32-bit and 64-bit). For a more detailed introduction
to the Windows build system and Visual Studio project files see the appendix B on
page 72.

• Prerequisites

– Compiler: Download Visual Studio Express Desktop 2012 or later (e.g. 2013
Version): http://www.microsoft.com/en-us/download/details.aspx?id=
40787

– Download Qt4 or later Qt5

– Download and install the pthreads library (pre-build binary from ftp://

sources.redhat.com/pub/pthreads-win32) into either c:\pthreads-w32

or ./extern/pthreads-w32

• Start the Visual Studio Developer Command Prompt from the Start Menu entries for
Visual Studio (Tools subfolder) which opens a cmd.exe session with the necessary
environment variables already set. If your Qt installation has not been added to the

13

http://www.microsoft.com/en-us/download/details.aspx?id=40787
http://www.microsoft.com/en-us/download/details.aspx?id=40787
ftp://sources.redhat.com/pub/pthreads-win32
ftp://sources.redhat.com/pub/pthreads-win32

EUDAQ User Manual 3. Installing EUDAQ

global %PATH% variable, you need to execute the qtenv2.bat batch file (or similar)
in the Qt folder, e.g.

C:\Qt\Qt5.1.1\5.1.1\msvc2012\bin\qtenv2.bat

Replace ”5.1.1” with the version string of your Qt installation.

• Now clone the EUDAQ repository (or download using GitHub) and enter the build
directory on the prompt, e.g. by entering

cd c:\Users\[username]\Documents\GitHub\eudaq\build

• Configuration: Now enter

cmake ..

to generate the VS project files.

• Compile by calling

MSBUILD.exe EUDAQ.sln /p:Configuration=Release

or install into eudaq\bin by running

MSBUILD.exe INSTALL.vcxproj /p:Configuration=Release

• This will compile the main library and the GUI. For additional processors, please
check the individual documentation.

Note on “moc.exe - System Error: The program can’t start because MSVCP110.dll is
missing from your computer” errors: when using Visual Express 2013 and pthreads-w32

2.9.1, you might require “Visual C++ Redistributable for Visual Studio 2012”: download
(either x86 or x64) from http://www.microsoft.com/en-us/download/details.aspx?

id=30679 and install.

14

http://www.microsoft.com/en-us/download/details.aspx?id=30679
http://www.microsoft.com/en-us/download/details.aspx?id=30679

EUDAQ User Manual 4. Running EUDAQ

4. Running EUDAQ

This section will describe running the DAQ system, mainly from the point of view
of EUDET-type beam telescope [10] operated together with DUTs. However, this
description can be applied to DAQ system in general.
All executable programs from the different subdirectories are placed inside the bin

subdirectory, and should be run from here. They should all accept a -h (or --help)
command-line parameter, which will provide a summary of possible different command-
line options.
The executable programs mainly split up in two different categories: Processes, which
are used for the data acquisition and communicating with the Run Control (DAQ), and
utilities, which are used before or after the data taking in order to access the data files
(Test, Devel., Tools). In Table 2, you will find an overview of the most important EUDAQ
executables.

4.1. Preparation

Some preparation is needed to make sure the environment is set up correctly and the
necessary TCP ports are not blocked before the DAQ can run properly.

4.1.1. Directories

EUDAQ expects two directories that will be used to store data files and log files. These
can be directories or symbolic links to other directories.
Firstly, inside the eudaq directory, there should be a directory (or a symbolic link) called
data. This will contain the data files written by the Data Collector, as well as a file
containing the last run number, so that it will continue incrementing even when the
DAQ is restarted. Secondly, there should be a directory (or symbolic link) called logs.
This will be used by the Log Collector to store log files containing all the log messages
received.

4.1.2. Hostnames

EUDAQ processes communicate between themselves using TCP/IP sockets. When
processes are started, they need to know where the Run Control runs. There is no
completely fool-proof way of determining this, so processes look at the environment
variable $HOSTNAME.
Usually, this should be the DNS name of the machine it is running on, but in some cases
it may not work correctly. If this is the case, it may be necessary to set this variable
manually, either to the real host name or the machine’s IP address. In the case, that
all the processes will be running on the same computer, the host name can be set to
localhost which correspons do the IP adress 127.0.0.1.
Depending on the operating system and the command shell, you can set the host name
by

15

EUDAQ User Manual 4. Running EUDAQ

Category Name Binary Description

DAQ Run Control euRun.exe GUI version, recommen-
ded (Sec. 4.2.1)

DAQ Run Control TestRunControl.exe CLI version (Sec. 4.2.1)
DAQ Log Collector euLog.exe GUI version, recommen-

ded (Sec. 4.2.2)
DAQ Log Collector TestLogCollector.exe CLI version (Sec. 4.2.2)
DAQ Data Collector TestDataCollector.exe CLI, recommended (Sec.

4.2.3)
DAQ Online Monitor OnlineMon.exe GUI version, recommen-

ded (Sec. 4.2.6)
DAQ Online Monitor TestMonitor.exe CLI version (Sec. 4.2.6)
DAQ TLU Producer TLUProducer.exe CLI for EUDET-type

telescopes (Sec. 4.2.4)
DAQ Mimosa26 Producer NIProducer.exe CLI for EUDET-type

telescopes (Sec. 4.2.5)
DAQ Run Listener RunListener.exe CLI, listens to Run Con-

trol, no description

Test TLU Control TLUControl.exe CLI (Sec. 4.4.1)
Test/DAQ Test Producer TestProducer.exe CLI (Sec. 4.2.7)
Test/DAQ Dummy Producer euProd.exe GUI, no description

Devel./DAQ Example Producer ExampleProducer.exe CLI, recommended (Sec.
4.2.7)

Devel. Exampler Reader ExampleReader.exe CLI, example raw file
reader, no description

Devel. Option Example OptionExample.exe CLI, example to use op-
tions, no description

Tools File Checker FileChecker.exe CLI, raw data file
checker (Sec. 4.4.2)

Tools Test Reader TestReader.exe CLI, raw data file reader
(Sec. 4.4.3)

Tools EURunSplitter EURunSplitter.exe CLI, splits raw data files,
no description

Tools Converter Converter.exe CLI, raw data file con-
verter (Sec. 4.4.4)

Tools IPHC Converter IPHCConverter.exe CLI, IPHC M26 to raw
converter, no descrip-
tion

Tools Cluster Extractor ClusterExtractor.exe CLI, extracting clusters
from raw files (Sec.
4.4.5)

Tools MagicLogBook MagicLogBook.exe obsolete (!), CLI (Sec.
4.4.6)

Table 2: Overview of EUDAQ executables: DAQ processes and tools as graphical user
interfaces (GUI) or command line interfaces (CLI).

16

EUDAQ User Manual 4. Running EUDAQ

• for bash-like shells: export HOSTNAME=name

• for csh-like shells: setenv HOSTNAME name

• for Windows command lines / scripts: set HOSTNAME=name

where name is the name or the IP adress.
Note: It is recommended to set the host name to the (local) IP adress. This method is
approved and working at the EUDET-type telescopes at DESY and CERN.

4.1.3. Ports and firewall

The different processes communicate between themselves using TCP/IP sockets. If a
firewall is running, it may block these connections, especially if the processes are running
on different computers. If all the processes will be run from the same computer, then
it is probably not necessary to do anything. If a port is blocked, you will see an error
message similar to the following when attempting to start some programs:

Are you sure the server is running? - Error 61 connecting to ←↩
localhost:44000: Connection refused

The ports can be configured when calling the the processors on the command line (see
below), but the default and usually free port numbers are:

44000 : This is the port used to send commands from the Run Control.

44001 : This port is used to send data from the producers to the Data Collector.

44002 : This port is used to send log messages from all processes to the Log Collector.

If processes will be running on different computers, then these ports should be opened
up in the firewall. The method for doing this depends on the Operating System used,
and is outside the scope of this manual.

4.1.4. TLU permissions

If you are not using a TLU conencted to a Linux OS, you may skip this part.
On many Linux distributions, the device node used to communicate over the USB bus is
only accessible by a user having root rights by default (sudo ...). To set the correct
permissions when a TLU is connected, you need to add a udev rule: as a root user, create
the file /etc/udev/rules.d/54-tlu.rules and add the following lines:

for Debian

ACTION=="add", DRIVERS=="?*", ATTR{idVendor}=="165d", ←↩
ATTR{idProduct}=="0001", MODE="0666"

in case you are using a debian-based distribution such as Ubuntu.

17

EUDAQ User Manual 4. Running EUDAQ

for Red Hat, e.g. SL5

SYSFS{idVendor}=="165d", SYSFS{idProduct}=="0001", GROUP="NOROOTUSB", ←↩
MODE="0666"

if you are using a Red Hat-based distribution (such as Scientific Linux) or:
After replugging the TLU, the device should be accessible by all users.

4.2. Processes

The DAQ system is made up of a number of different processes that may all be run on
the same, or on different computers.

4.2.1. Run Control

There are two versions of the Run Control – a text-based version and a graphical
version (see Figure 2). The graphical version is recommended, since it is well tested
and complete. The executable is called euRun.exe, or on Mac OS X it is an application
bundle called euRun.app. The text-based version can be useful for testing, the executable
is TestRunControl.exe.

Figure 2: The Run Control graphical user interface.

18

EUDAQ User Manual 4. Running EUDAQ

Figure 3: The FSM of EUDAQ.

Usually, no command-line option should be needed. If needed, it can be told to listen on
a specific port (e.g. to run two copies on the same machine) using the -a 〈port〉 option,
for example:

./euRun.exe -a 44000

Note: If two copies of EUDAQ should run simultaneously, the ports of the Log and
DataCollectors have to be different!

Finite-State Machine Since EUDAQ version 1.7, a finite-state machine (FSM) is
implemented (see Figure 3) [11]. Each process connected to the Run Control can always
be characterized by the current state:

• UNINITIALISED: the initial state of every connection. Initialisation has not not
been conducted yet. Available transitions are OnInitialise and OnTerminate.3

• UNCONFIGURED: initialisation has already been conducted, but configuration
parameters have not been set yet. Available transitions are OnConfigure and
OnTerminate.

• CONFIGURED: configuration parameters have already been set. Available trans-
itions are OnStartRun, OnConfigure and OnTerminate.

• RUNNING: the state of the operating connections. For producers it means produ-
cing data, the OnlineMonitor are providing plots, the LogCollector is continuing

3Some detectors require not only setting up different parameters, but also the first initialisation of the
hardware. Previously both these steps were carried out during the configuration. However, setting
up the hardware is only necessary during the start and can be time demanding, so reinitialisation
of the hardware can take additional time when reconfiguration is needed. One should note that
OnInitialise function that is used to set the connection into the CONFIGURED state has default
implementation in the base CommandReceiver class, so users who do not need an initialisation step
can simply skip it. In addition, this ensures backward compatibility for existing producers. [11]

19

EUDAQ User Manual 4. Running EUDAQ

to collect log messages and the DataCollector combines data streams from pro-
ducers. The only available transition is OnStopRun.

• ERROR: this state can be used by users in case of errors during configuration,
running process, etc. The only available transition is OnTerminate.

The state of the machine is determined by the lowest state of the connected components
(LogCollector, DataCollector, OnlineMonotor, Producers) in the following priority:
ERROR, UNITIALISED, UNCONFIGURED, CONFIGURED, RUNNING. It means,
for example, that even if only one connection is in the ERROR state, the whole machine
will also be in that state. This prevents such mistakes as running the system before every
component has finished the configuration.

4.2.2. Log Collector

It is recommended to start the Log Collector directly after having started the Run
Control and before starting other processors in order to collect all log messages generated
by all other processes.

Figure 4: The Log Collector graphical user interface.

Like the Run Control, there are also two versions of the Log Collector. The graphical
version is called euLog.exe, or euLog.app on Mac OS X, and the text-based version is
called TestLogCollector.exe.
If it is running on the same machine as the Run Control, it should not need any command-
line options. However, if it is running on a different machine, it must be told on which
machine the Run Control is running. By using the -r 〈hostname〉 option, the Log
Collector knows where to connect to the Run Control, for example the Run Control runs
on a machine haveing a local IP 192.168.0.1 and listening on the port 40000 (as default):

./euLog.exe -r tcp://192.168.0.1:44000

The port can also be set using the -a 〈port〉 option, similar to the Run Control.

20

EUDAQ User Manual 4. Running EUDAQ

4.2.3. Data Collector

The Data Collector is the process that collects all the raw data from the Producers,
merges all the connected incoming streams into a single data stream, and writes it to file.
There is only a text-based version called TestDataCollector.exe. It is recommended to
start the Data Collector directly after having started the Run Control and RunControl
and before starting other processors.
Like the Log Collector, it should be told where to connect to the Run Control if it is
not running on the same machine. Accordingly, the -r and -a options can be used, for
example:

./TestDataCollector.exe -r tcp://192.168.0.1:44000

It is also possible to run multiple Data Collector instances within one EUDAQ session.
This can be useful to reduce network traffic and e.g. write the output of one producer
to a locally attached disk. When running several Data Collectors simultaneously, the
Run Control assigns a Producer to a Data Collector by name: if the name of a Data
Collector matches that of a Producer, the latter will be given the address and port of
the former. There can be only one instance of an unnamed Data Collector which serves
as the default for any non-matching Producer; if no unnamed Data Collector is present,
the first one connecting will serve as the default.
The name of a Data Collector can be set with the -n option, for example:

./TestDataCollector.exe -n myproducer

If you wish to run several instances of the Data Collector on one machine, you need
to make sure that they listen to different addresses using the -a option as described
above. Furthermore, each Data Collector has to write to a different file by including
the FilePattern option in the corresponding section of your configuration file (also see
section 4.3.3):

[DataCollector.myproducer]

FilePattern = "../data/run$6R_myproducer$X"

4.2.4. TLU Producer

If you do not have a TLU in your setup, you may skip this part. Otherwise you should
run a TLU Producer, which will configure the TLU, and read out the timestamps and
send them to the Data Collector. On the computer with the TLU connected, start the
TLUProducer.exe program. If this is not the same machine as the Run Control, use the
-r option as for the Data and Log Collectors, in this example:

./TLUProducer.exe -r 192.168.0.1:44000

If the TLU Producer fails to start, make sure the permissions are set up correctly (see
subsubsection 4.1.4).

21

EUDAQ User Manual 4. Running EUDAQ

4.2.5. NI Producer (Mimosa 26 sensors)

If you don’t have a EUDET-type beam telescope using 6 planes with Mimosa 26 sensors [3]
in your setup, you may skip this part. The NI Producer is the interface between the
Mimosa DAQ (at the moment Anemome 1.3 LabView software) and the EUDAQ. The
Mimosa DAQ is based on a National Instrument machine which runs with a Windows
OS. Thus, you start the NI Producer only on a NI crate after opening the Anemone
LabView software. It will connect to the Run Control (euRun) by using -r option, too,
in this example:

./NIProducer.exe -r 192.168.0.1:44000

If the NI Producer fails to start, make sure that the IP adresses (host names) are set
correctly in the start scripts and the EUDAQ configurations files [10, section 5.2.1.2 1.].

4.2.6. Online Monitor

The Online Monitor reads the data file written by the Data Collector, and generates
several ROOT histograms that can be useful for online monitoring. Since it reads the
native data file directly (by using the corresponding DataConverterPlugin), it must be
run on the same machine as the Data Collector.

Figure 5: The OnlineMon showing correlation plots between different Mimosa26 planes
of the EUDET telescope.

22

EUDAQ User Manual 4. Running EUDAQ

The Online Monitor can be run in one of two modes: online or offline. In online mode,
it connects to the Run Control, so it will know when new runs are started, and it will
automatically open each new data file as it is created. To run it in online mode, the -r

option may be used to assign Run Control, in this example:

./OnlineMon.exe -r 192.168.0.1:44000

Note: The Online Monitor is working properly on Unix machines. In addition, it is
recommended to run the Online Monitor on the same machine as the Data Collector.
In offline mode, there is no Run Control, and it only analyses the data file it is given on
the command line usind the -f option. An example command line is:

./OnlineMon.exe -f 5432

This will run it in offline mode, opening the file corresponding to run 5432 (alternatively,
the full path to a file may be given).

4.2.7. Test and Example Producer

For testing purposes, you may use the TestProducer. This works similarly to a real
producer, but does not talk to any real hardware, instead providing a menu for the user
to manually send events.
The ExampleProducer was written to illustrate the writing of a new Producer (see
section 5). However, it will actually generate some example data, and so can also be used
for testing purposes. It works more like a real Producer than the TestProducer, in that
it does not require user intervention to generate each trigger, and the data generated
emulates a simple (but realistic) sensor, and can be properly converted, and therefore
displayed in the Monitor.

4.2.8. Other/DUT Producer(s)

If you have a producer for your own hardware (see section 5), it should also have an
option to set the address of the Run Control.

4.2.9. Slow Producer

Since EUDAQ version 1.7 [11]: A slow producer is a special type of producers which
interacts with the DataCollector in a different way using the hardware conception of
the triggerless data taking. Instead of sending busy signals it can simply provide data
at its own rate. The DataCollector distinguishes the slow producer from the usual
one, it waits only for events from simple producers and ignores the absence of those
from slow producers. In order to integrate a slow device one has to simply extend it
from the SlowProducer class instead of the Producer class, but having then the same
functionality.

23

EUDAQ User Manual 4. Running EUDAQ

4.2.10. Python Interface and Wrapper for Core EUDAQ Components

A Python interface is provided for selected EUDAQ components: RunControl, DataCol-
lector and a Producer, that can be extended on the Python side. The interface is realized
through the ctypes package that is part of every standard Python installation and
requires the numpy Python package to be installed. The interface code for all components
is located in the main/python directory.
To use the interface and access the components as Python objects, the wrapper must be
loaded inside your Python script:

#!/usr/bin/env python2

execfile('PyEUDAQWrapper.py') # load ctypes wrapper

prc = PyRunControl() # start run control with default settings

wait for more than one active connection to appear

while prc.NumConnections < 2:

sleep(1)

prc.Configure("ExampleConfig") # load configuration file

while not prc.AllOk:

sleep(1) # sleep while waiting for all connected producers

prc.StartRun()

This little scripts creates a RunControl instance, sends a configuration to all connected
producers, waits for their reply, and starts a new run. Several more extensive examples
for using Python with EUDAQ are located in the python directory in the main EUDAQ
directory.

4.3. Running the DAQ

4.3.1. Starting EUDAQ using STARTRUN scripts

To start EUDAQ, all of the necessary processes have to be started in the correct order.
The first process must be the Run Control (euRun), since all other processes will attempt
to connect to it when they start up. Then it is recommended to start the Log Collector,
since any log messages it receives may be useful to help with debugging in case everything
does not start as expected. Next, the Data Collector should be started. Finally all others
Producers, and if needed, the Online Monitor.
In the eudaq/etc/scripts directory, there are different Unix STARTRUN scripts. These
scripts can be customized to load the appropriate processes for running the DAQ. This
allows you to start all the processes necessary with a single command.4

Starting scripts for Unix and for Windows, you can find in the eudaq-configuration
repository [12].

4If starting processes on other computers via SSH, it is recommended to set up SSH keys so that the
processes may be started without having to type a password.

24

EUDAQ User Manual 4. Running EUDAQ

4.3.2. Operating EUDAQ

Once all the processes have been started, and by using the Run Control (see Figure 2),
According to the machine state section 4.2.1, EUDAQ and all processes can be initialized,
configured or re-configured, data taking (runs) can be started and stopped, and the
software can be terminated.

• First, the appropriate initialisation file should be selected (see subsubsection 4.3.3
for creating and editing init-files). Then the Init button can be pressed, which
will send a initialisation command to all connected processes.

• Second, the appropriate configuration should be selected (see subsubsection 4.3.3
for creating and editing configurations), and the GeoID should be verified (see
subsubsection 4.3.4), before continuing. Then the Config button can be pressed,
which will send a configuration command (with the contents of the selected config-
uration file) to all connected processes. The full contents of the configuration file
will also be stored in the beginning-of-run-event (BORE) of the data file, so that
this information is always available along with the data.

• Once all connected processes are fully configured, a run may be started, by pressing
the Start button. Whatever text is in the corresponding text box (”Run:”) when
the button is pressed will be stored as a comment in the data file. This can be
used to help identify the different runs later.

• Once a run is completed, it may be stopped by pressing the Stop button. Runs
will also stop and restart automatically when the data file reaches a threshold in
size (by default this is 1 GB).5 The threshold size for restarting a run may be
configured in the config file (see subsubsection 4.3.3).

• At any time, a message may be sent to the log file by filling in the (”Log:”) text box
and pressing the corresponding button. The text should appear in the LogCollector
window, and will be stored in the log file for later access.

• Once the run is stopped, the system may be reconfigured with a different configur-
ation, or another run may be started; or EUDAQ can be terminated.

4.3.3. Init/Config-Files

∗.init-files for initialisation and ∗.conf-files for configuration are text files in a specific
format, containing name-value pairs separated into different sections. See subsection A.1
for an example file.
Any text from a # character until the end of the line is treated as a comment, and
ignored. Each section in the config file is delimited by a name in square brackets (e.g.
[RunControl]). The name represents the type of process to which it applies; if there

5This is because there is a file size limit of 2 GB for storage on the GRID, and the processed files can
grow bigger than the original native files.

25

EUDAQ User Manual 4. Running EUDAQ

are several such processes, then they can be differentiated by including the name after
a period (e.g. [Producer.Example]). Within each section, any number of parameters
may be specified, in the form Name = Value. It is then up to the individual processes
how these parameters are interpreted.
The entire contents of the config file will be sent to all processes during the configuration,
and each process will have the appropriate section selected. The file will also be attached
to the BORE, so that it is available with the data later, even if the original config file is
modified or deleted.

4.3.4. GeoID

The GeoID is a number representing the physical positioning of the telescope and DUT(s).
Each time a change is made to the telescope layout, this number should be incremented.
To change the number, double-click on it, and a window will appear with the new value.
By default it will increment the old value by one, so normally you should just click OK,
but if necessary you may edit the value first.
The GeoID is inserted into the config file when it is sent, so it is also stored in the data
file, and will be used to select the correct GEAR file for alignment during the data
analysis stage.

4.4. Other Utilities

There are a number of other utilities available that are not needed for running the DAQ,
but can be useful for other tasks such as debugging. The executables are all located in
the bin subdirectory. They should all accept a help (-h or --help) option, to print a
summary of the available options.

4.4.1. TLUControl

The TLUControl.exe program is a standalone program for running the TLU without
using the full DAQ. The most commonly used parameters are shown below. For each
option, the short (preceeded by one dash) and the long (preceeded by two dashes) option
names are shown. Only one of the two forms should be used for each option, but long and
short options can be mixed together on the command line) Each options has a parameter
and a default value that will be used if the option is not specified.

-d --dutmask 〈mask = 0〉 : The DUT mask; this defines which DUT connections are
activated. It is a bit-mask, so 1 means connector 0, 2 means connector 1, etc..

-a --andmask 〈mask = 255〉 : The AND mask; this defines which external trigger inputs
are activated. It is a bit-mask, so 1 means channel 0, 2 means channel 1, etc.. The
specified channels are ANDed together, and used to generate a trigger signal.

-t --trigger 〈msecs = 0〉 : Internal trigger period. If non-zero, the TLU will generate
internal triggers with the specified period in milliseconds. If set to zero, the internal
trigger is off.

26

EUDAQ User Manual 4. Running EUDAQ

-i --dutinputs 〈values = ""〉 : Input mode select. A sequence of comma-separated
strings specifying which connectors to use for the DUT inputs. Valid values are
RJ45, LEMO, HDMI, and NONE.

-u --wait-for-user : Pause the program after the TLU is configured, before starting
triggers. The default is to not wait for the user.

Other parameters available are as follows:

-o --ormask 〈mask = 0〉 : The OR mask; this defines which external trigger inputs are
activated. It is a bit-mask, so 1 means channel 0, 2 means channel 1, etc.. The
specified channels are ORed together, and used to generate a trigger signal.

-v --vetomask 〈mask = 0〉 : The VETO mask; this defines which external trigger inputs
are activated. It is a bit-mask, so 1 means channel 0, 2 means channel 1, etc.. The
specified channels are used to veto the generation of a trigger if they are active.

-w --wait 〈ms = 1000〉 : Wait time. This is the time to wait between updates.

-n --notimestamp : Indicates that the timestamp buffer should not be read out.

-q --quit : Quit the program after configuring the TLU.

-s --save-file 〈filename = ""〉 : The filename to save trigger numbers and timestamps

-p --strobeperiod 〈cycles = 1000〉 : Period for timing strobe (in TLU clock cycles).

-l --strobelength 〈cycles = 100〉 : Length of ‘on’ time for timing strobe (in TLU
clock cycles).

-b --dutveto 〈mask = 0〉 : Mask for enabling veto of triggers (‘backpressure’) by rasing
DUT CLK.

-hm --handshakemode 〈nohandshake = 0〉 : In this mode the TLU issues a fixed-length
pulse on the trigger line (0 = no handshake).

-pw --powervctrl 〈mV = 800〉 : [obsolete but provided for backward compatibility,
please use -pv] Sets the Vcntl control voltage to all PMTs. The range of val-
ues is between 0 and 1000 (or 0 and 2000 if the TLU has been modified by cutting
LC1 and jumpering LO1 on the PMT Supply Daughterboard and specifying the -pm

1 option).

-pv --pmtvcntl 〈mV = 800〉 : Sets the Vcntl control voltage to all PMTs (see option
-pw for more details). Will override the value of -pw if it is specified. If neither -pw
or -pv is specified, the default value will be used (and can be overridden on an
individual PMT basis).

27

EUDAQ User Manual 4. Running EUDAQ

-p1 --pmtvcntl1 〈mV〉 : Sets the PMT Vcntl voltage for PMT1 (Chan 0) only. If not
specified, the default or values specified by -pw or -pv (which will override -pw) is
used.

-p2 --pmtvcntl2 〈mV〉 : Sets the PMT Vcntl voltage for PMT2 (Chan 1) only. If not
specified, the default or values specified by -pw or -pv (which will override -pw) is
used.

-p3 --pmtvcntl3 〈mV〉 : Sets the PMT Vcntl voltage for PMT3 (Chan 2) only. If not
specified, the default or values specified by -pw or -pv (which will override -pw) is
used.

-p4 --pmtvcntl4 〈mV〉 : Sets the PMT Vcntl voltage for PMT4 (Chan 3) only. If not
specified, the default or values specified by -pw or -pv (which will override -pw) is
used.

-pm --pmtvcntlmod 〈value = 0〉 : Specifies whether the TLU PMT Supply Daughter-
card is modified (LC1 cut and LO1 jumpered) or not. A 〈value〉 of 0 specifies that
it is unmodified (and thus the Vcntl range is from 0mV to 1000mV), and a 〈value〉
of 1 specifies that the TLU is modified (and thus the Vcntl range is from 0mV
to 2000mV). This feature is to accomodate newer Hamamatsu PMT models (e.g.
H10721) that require a control voltage range of, for instance, 500mV to 1100mV
that are being used in place of the older (discontinued, but what the TLU was
designed to accomodate and control) models that required a control voltage of
between 250mV and 900mV.

-f --bitfile 〈filename = ""〉 : The bitfile containing the TLU firmware to be loaded.

-e --error-handler 〈value = 2〉 : Error handler setting. Setting to 0 indicates the
program should abort on an error. Setting it to a value greater than 0 indicates
the number of tries that should be attempted before generating an exception.

-r --fwversion 〈value = 0〉 : Specifies the firmware version to load (setting to 0
indicates the version should be chosen automatically).

-z --trace-file 〈filename = ""〉 : The filename to save a trace of all USB accesses.
Prepend a dash (‘-’) to output errors only, or a plus (‘+’) for all data (including
block transfers).

An example use of the command is shown below:

./TLUControl.exe -t 200 -d 3 -i LEMO,RJ45 -u

Using options:

TLU version = 0 (auto)

Bit file name = '' (auto)

Trigger interval = 200 ms (5 Hz)

DUT Mask = 0x03 (3)

28

EUDAQ User Manual 4. Running EUDAQ

Veto Mask = 0x00 (0)

And Mask = 0xff (255)

Or Mask = 0x00 (0)

DUT inputs = LEMO,RJ45

Strobe period = 0x0003e8 (1000)

Strobe length = 0x000064 (100)

Enable DUT Veto = 0x00 (0)

Save file = '' (none)

TLU Version = v0.2c

TLU Serial number = 0x062b (1579)

Firmware file = TLU2_Toplevel.bit

Firmware version = 65

Library version = 65

Press enter to start triggers.

TLU Started!

Status: 20,00,--,--,--,-- (0,0)

Scalers: 0, 0, 0, 0

Particles: 2

Triggers: 0

Entries: 0

TS errors: 0, 0 (redundancy, re-read)

Timestamp: 0x8d768 (579432) = 0.00150891

Time: 0.009 s, Freq: 0 Hz, Average: 0 Hz

0, 0x27fb479 (41923705) = 0.109174, diff=41923705

1, 0x7139ab9 (118725305) = 0.309174, diff=76801600

2, 0xba780f9 (195526905) = 0.509174, diff=76801600

3, 0x103b6739 (272328505) = 0.709174, diff=76801600

4, 0x14cf4d79 (349130105) = 0.909174, diff=76801600

Status: 20,00,--,--,--,-- (0,1)

Scalers: 0, 0, 0, 0

Particles: 7

Triggers: 5

Entries: 5

TS errors: 0, 0 (redundancy, re-read)

Timestamp: 0x1726fa48 (388430408) = 1.01152

Time: 1.023 s, Freq: 4.92913 Hz, Average: 4.88442 Hz

5, 0x196333b9 (425931705) = 1.10917, diff=76801600

6, 0x1df719f9 (502733305) = 1.30917, diff=76801600

7, 0x228b0039 (579534905) = 1.50917, diff=76801600

8, 0x271ee679 (656336505) = 1.70917, diff=76801600

29

EUDAQ User Manual 4. Running EUDAQ

9, 0x2bb2ccb9 (733138105) = 1.90917, diff=76801600

Status: 20,00,--,--,--,-- (0,1)

Scalers: 0, 0, 0, 0

Particles: 12

Triggers: 10

Entries: 5

TS errors: 0, 0 (redundancy, re-read)

Timestamp: 0x2e5bb708 (777762568) = 2.02538

Time: 2.037 s, Freq: 4.93259 Hz, Average: 4.90838 Hz

^CQuitting...

This sets up internal triggers at 5 Hz (200 ms period), and activates DUT inputs 0 and 1.
Input 0 is configured to use the LEMO connector, and input 1 to use the RJ45 connector.
The first part of the output just summarizes the input parameters. The next part shows
information about the version numbers of the TLU and the firmware.
It will then configure the TLU, and if the -u option is used, it will wait for the user to
press enter before continuing. The triggers are then enabled, and a summary of the status
is printed out periodically (by default every 1 second). The program can be stopped
cleanly by pressing Ctrl-C.
Each block of status output consists of:

• a list of triggers, if there were any since the last update (the first time there are
none), each showing:

– the trigger number,

– the timestamp of the trigger, in hex, decimal and converted to seconds,

– the difference since the last trigger.

• the status of the DUT connections (see below),

• the values of the scalers on the external trigger inputs,

• the number of “particles”, which means all the potential triggers (including those
that were vetoed),

• the number of triggers that actually got sent to the DUTs,

• the number of entries in the trigger buffer, this should be equal to the number of
triggers printed out at the top of the status block,

• the number of timestamp errors detected by redundancy, and by re-reading,

• the current timestamp value,

• the time since the run started, the current trigger frequency, and the average
frequency over the whole run.

In the example output this block is repeated three times, before Ctrl-C is pressed to
stop it. The status is of the DUT connections formatted as:

• two digits for each DUT connection consisting of:

– two hyphens (--) if the connection is inactive, else

30

EUDAQ User Manual 4. Running EUDAQ

– the first digit represents the inputs from the DUT; with the busy line in bit
0 and the clock line in bit 1 (note the clock input can float low or high if a
LEMO input is selected, as it is not connected),

– the second digit represents the state of the FSM, as defined in the TLU
manual[7] (0 is ready, 1 is waiting for busy high, 4 is waiting for busy low, 5
is DUT-initiated veto, and F is an error condition).

• then in parentheses:

– the veto state (software veto in bit 0, overall veto in bit 1),

– the DMA state (1 when a DMA transfer is taking place).

4.4.2. FileChecker

This is a small utility that reads raw data files and checks if all events are readable,
can be syncronised using the TLU trigger id and lists which type of subevents the file
contains.
It should be called with list of file paths or run numbers. For any argument that consist
only of numerical digits the file path is constructed by substituting $6R in the input
pattern (defaults to “../data/run$6R.raw”) with the run number padded to 6 digits.
For example:

./FileChecker.exe {6045..6050}

This would produce the following output.

run valid num_events contains errors

------ ----- ---------- ------------------------- ----------------------

6045 true 13131 MUPIX4,NI,TLU

6046 true 1 MUPIX4,NI,TLU

6047 true 14674 MUPIX4,NI,TLU

6048 true 7776 MUPIX4,NI,TLU

6049 false 0 no events in the file.

6050 false -1 read error.

4.4.3. TestReader

The TestReader.exe program will read a native data file, and can display various pieces
of information from the file. Commonly used options are:

-b : Display the BORE.

-e : Display the end-of-run-event (EORE).

-d 〈range〉 : Display the specified range of event numbers.

-p : Process the displayed events and display the corresponding StandardEvents.

31

EUDAQ User Manual 4. Running EUDAQ

-u : Dump the raw data for the displayed events.

-s : Try to resynchronize events based on the TLU event number. A full description of
this option is outside the scope of this manual (but if you don’t know what it is,
you probably don’t need it).

After the options a list of one or more filenames can be given. Any filenames that consist
only of numerical digits will be interpreted according to the input pattern (by default
this is “../data/run$6R.raw”, where $6R will be replaced with the run number padded
to 6 digits). For example:

./TestReader.exe -b -e -p -d 1-10,100,1000 example.raw 5432

This will display the BORE and EORE, and the events 1 to 10, 100 and 1000, pro-
cessing them to also display the StandardEvents, from the files example.raw and
../data/run005432.raw.

4.4.4. Converter

The Converter.exe program will read a native data file, optionally select just a subset
of events from the file, and can then write it out to another file in either the same native
format, or a different format. The most commonly used options are:

-t 〈type〉 : The file type to write out. The available types are listed below.

-e 〈range〉 : Select the specified range of event numbers.

-s : Try to resynchronize events based on the TLU event number (see TestReader in
subsubsection 4.4.3).

The available output file types are as follows:

native : The native EUDAQ binary file format, consisting of a serialised stream of
DetectorEvents, containing the raw data read out from the hardware.

standard : Like the native format, this is also a serialised stream, but in this case
it contains StandardEvents, in which the raw data has been converted into a
standard format.

lcio : The standard LCIO file format used by the analysis software. This type is only
available if EUDAQ was compiled with LCIO support.

root : A Root file containing a TTree with the hit pixel information.

text : A simple text based format (not yet implemented).

mimoloop : A text based format mimicking the output of the mimoloop program (from
Angelo Cotta Ramusino and Lorenzo Chiarelli at INFN Ferrara).

Although this program can be used to convert a native data file into LCIO format, the
more usual (and therefore better tested) way is to use the EUTelescope converter.

32

EUDAQ User Manual 4. Running EUDAQ

4.4.5. ClusterExtractor

This program can be used to quickly extract some clusters from raw data. It is not as
sophisticated as the EUTelescope package, which should be preferred for real analysis,
but it can be useful for doing quick checks. It will read a native data file, perform a
basic clustering, and then write these clusters to one text file per sensor plane. The most
commonly used options are:

-p 〈pixels〉 : The cluster size in pixels. It should be an odd number, with 1 meaning
no clustering (just pixels over threshold), 3 meaning 3×3 pixel clusters, etc.

-n 〈adcs〉 : The noise level (sigma) in ADC units. This is used to scale the thresholds
in terms of the noise.

-s 〈thresh〉 : The threshold for seed pixels, in terms of the noise.

-c 〈thresh〉 : The threshold for the total charge of a cluster, in terms of the cumulative
noise of all the pixels in the cluster.

-w : Reports the cluster centre as the weighted average of the pixels, instead of the
position of the seed pixel.

An example use is:

./ClusterExtractor.exe -p 3 -n 3.5 -s 6 -c 10 -w 5432

This will generate a number of text files named runNNN eutel M.txt, where NNN is the
run number, and M is the sensor plane number. The format of the output text files is as
follows:

2 2 51487659237

182 153 126

241 120 125

3 1 51489095892

111 67 346

5 1 51491334074

113 141 171

7 2 51495330212

252 240 305

95 170 189

The first line contains the event number, the number of clusters, and the TLU timestamp.
Then for each cluster there is one line, containing the x and y coordinates of the cluster
centre, and the total charge in ADC units. The cluster lines are prepended with a space
to make it easier to scan the file by eye.

33

EUDAQ User Manual 4. Running EUDAQ

4.4.6. MagicLogBook

This program is designed to extract as much information as possible from data files and
log files, in order to reconstruct a log book. Despite its name, it is in fact not magical,
so it is preferable to keep a good log book during running, rather than relying on this
program to generate it later.
The available options are listed below:

-f 〈fields〉 : A list of fields to include in the output, in the form name=value, with
multiple fields separated by commas. If a predefined list is also specified these will
be appended to the list.

-s 〈separator〉 : The separator to use between fields in the output. The default is a
tab character.

-h 〈string〉 : A string that appears at the beginning of the header line (with the list of
field names), that can be used to differentiate it from the other lines. The default
is an empty string.

-p name : Use a predefined list of fields. Currently available values are normal and full.

-o 〈file〉 : The output filename. By default the standard output is used.

The easiest method of running is to use a predefined list of fields. There are currently
two predefined lists available: normal and full. If neither of these are suitable, contact
the EUDAQ maintainer, as it may be possible to add more options.
The normal list includes:

• the run number,

• the config file name,

• the run start time,

• for the teawts (EUDRBs):

– the mode,

– the sensor type,

– whether they are running unsynchronized,

– the number of boards,

– and the firmware version.

• and for the TLU:

– the internal trigger interval,

– the AND mask,

– the DUT mask,

– and the firmware version.

34

EUDAQ User Manual 4. Running EUDAQ

The full list includes all the values from the normal list, plus the number of events in
the run and the end of run time. This is because these values can only be known by
reading the whole data file to the end, which is slow, especially for large data files.
If necessary, other information is available using custom fields, although the syntax for
these is a bit complicated, since it is designed to be as flexible as possible at specifying
any information in the data file. In the future it may be redefined in order to simplify it
if possible. Therefore it is recommended to use a predefined list of fields where possible.
Custom fields are specified as a comma separated list of items in the form name=value,
with the name being what will appear on the header line of the output, and the value
specifying what exactly to extract from the file. The possible values are illustrated below,
although not exhaustively:

events∗ : The number of events in the run.

config : The configuration name, or:

config:section:key : The value of the key from the corresponding section in
the config (e.g. config:Producer.EUDRB:NumBoards).

bore, tlu, eudrb, eore∗: Something from the BORE, the TLUEvent or EUDRBEvent

subevents of the BORE, or the EORE, respectively:

bore:.Run : The run number

bore:〈name〉 : Otherwise, if the second part does not start with a period, the value
of the tag 〈name〉 is used (e.g. tlu:DutMask or eudrb:MODE).

log : Something from the log file (not implemented yet).

∗ items marked with an asterisk require reading the whole data file, and are therefore
slow, especially when large data files are involved.
Note that the EUDRBEvent is now deprecated, having been replaced by the RawDataEvent,
but there is currently no way to specify this.
The MagicLogBook command is used as follows:

./MagicLogBook.exe -p normal ../data/*.raw

This will produce an output similar to the following:

Run Config Mode Det Start U P Trg AND DUT Tfw Efw

6371 eudet-beam 2009-07-29 07:44:39.535 1 6 0 0xf 0x10 241

6372 eudet-beam 2009-07-29 08:03:05.079 1 6 0 0xf 0x10 241

6373 eudet-m26test 2009-07-30 09:57:45.157 1 6 255 0xff 0x12 241

6374 eudet-m26test 2009-07-30 10:00:45.205 1 6 255 0xff 0x12 241

6375 eudet-m26test 2009-07-30 10:05:38.625 1 6 1 0xff 0x12 241

6376 eudet-m26test 2009-07-30 10:10:00.107 1 6 1 0xff 0x12 241

6379 eudet-m26test 2009-07-30 10:13:05.322 1 6 1 0xff 0x12 241

Note that the header row has been modified slightly to fit into the page width: the U

should be UnSync, P should be Planes, Trg should be TriggerInterval, Tfw should be
TLUfw, and Efw should be EUDRBfw. The columns Mode, Det and EUDRBfw are missing

35

EUDAQ User Manual 4. Running EUDAQ

from the output due to the fact that this information is now stored in a RawDataEvent,
which is not currently accessible with this version of the program.

4.4.7. Others

Some programs that are less used (or recently added) may not be described here. If they
look interesting, you can find out more about them by running them with the help (-h
or --help) option, or by examining the source code.

36

EUDAQ User Manual 5. Writing a Producer

5. Writing a Producer

Producers are the binding part between a user DAQ and the central EUDAQ Run
Control. A Producer consistes of a CommandReceiver and a DataSender, where the first
receives commands from the Run Control while the latter allows to send binary data
events to the Data Collector. A Producer base class is provided in order to simplify the
integration. The Producer is compiled against the EUDAQ library which implements all
of the required communication over the network. Example code for producers is provided,
see subsection A.2.

5.1. Configuration

The Configuration class is a way of storing configuration information in a way that
is easily accessible, and can be saved to or loaded from a human-readable file (see
subsubsection 4.3.3), and can be sent over the network. It is defined in the following
header:

#include "eudaq/Configuration.hh"

The configuration consists of a number of sections, each of which contains a list of
name-value pairs. The values are stored as strings, but they can be converted to/from
arbitrary types. Methods are provided to load from or save to file, to set the current
section, and to set or get configuration values. An example use is shown below:

std::ifstream infile("../conf/ExampleConfig.conf");

eudaq::Configuration config(infile, "Producer.Example");

int param = config.Get("Parameter", 0);

std::cout << "Loaded config, param = " << param << std::endl;

config.Set("Parameter", param+1);

config.Set("OtherParam", "something");

std::ofstream outfile("Test.conf");

config.Save(outfile);

This creates a configuration loaded from the file ../conf/ExampleConfig.conf, selecting
the Producer.Example section. It then gets an integer parameter from the configuration
and displays it. Then it modifies the value of the parameter and sets another parameter,
before writing the configuration to the file Test.conf.
A configuration object will be received by the Producer during the configuration, as
described in subsubsection 5.2.2.

5.2. Receiving Commands

The Run Control distributs commands to all registered clients, controlling the global
finite state machine and thus the DAQ. Whenever a user input is received from the Run
Control, the corresponding member function of the Producer will be invoked. These
member functions of the Producer class are virtual and can be overloaded by the user

37

EUDAQ User Manual 5. Writing a Producer

in their respective Producer implementations. The Producer base class definition is
provided in the header file:

#include "eudaq/Producer.hh"

5.2.1. OnInitialise

This method is called whenever an initialise command is received from the Run Control.
The method signature is:

virtual void OnInitialise(const eudaq::Configuration & config);

The configuration object is received from the Run Control. The Producer is free to read
any part of the configuration object but parameters cannot be changed owing to the
const qualifier.
If the initialisation step is not required for a certain DAQ, the function can be left
unimplemented in the Producer. In that case the corresponding member function of the
CommandReceiver base class is executed.

5.2.2. OnConfigure

This method is called whenever a configure command is received from the Run Control.
The method signature is:

virtual void OnConfigure(const eudaq::Configuration & config);

The configuration object is received from the Run Control where is has been loaded from
a user configurable file. The Producer is free to read any part of the configuration object
but parameters cannot be changed owing to the const qualifier.

5.2.3. OnStartRun

This is called on the start of each run. The method signature is:

virtual void OnStartRun(unsigned param);

As a parameter, it receives the run number of the started run. The Producer must send
a BORE, and then enable the data acquisition on the attached devices and prepare for
receiving events from the hardware.

5.2.4. OnStopRun

This is called at the end of the run. The method signature is simply:

virtual void OnStopRun();

Care should be taken that there are no more events pending to be read out. Once all
data events have been sent, an EORE should also be sent, to signal to the DAQ that the
Producer has ended the run successfully.

38

EUDAQ User Manual 5. Writing a Producer

5.3. Sending Data and the RawDataEvent class

Events may be sent to the DAQ using the Producer’s SendEvent() method that has
the following signature:

void SendEvent(const Event &);

It takes as a parameter an object derived from the eudaq::Event base class that will
be serialised and sent to the Data Collector. In practice it will usually be of the type
RawDataEvent.
The RawDataEvent is a generic container for blocks of binary data and is used to
encapsulate the data read directly from the devices and send it to the central DAQ for
storage. Each RawDataEvent may contain any number of raw data blocks. By convention
each block usually corresponds to one sensor, but this is not required; it is up to each
Producer how the raw data are encoded. The RawDataEvent class is defined in the
following header file:

#include "eudaq/RawDataEvent.hh"

The class is described in the following in more detail.

5.3.1. Constructor

A RawDataEvent is constructed as follows:

RawDataEvent event("EXAMPLE", run, event);

Where "EXAMPLE" is a string unique to the particular producer that will be used by the
event decoding factory to select the correct converter during decoding. The run and
event parameters are the run number and event number, respectively.
Furthermore, the producer is required to send a BORE and EORE at the beginning and
end of a run respectively. These are regular RawDataEvent objects with a particular flag
set. For convenience, separate methods are available to create the respective event types:

RawDataEvent::BORE("EXAMPLE", run);

RawDataEvent::EORE("EXAMPLE", run, event);

These methods return a RawDataEvent that may be either be sent directly to the DAQ,
or be modified first, e.g. by setting tags as described below in subsubsection 5.3.3.

5.3.2. Adding Data

Once a RawDataEvent has been constructed, data blocks may be added either using a
vector:

std::vector<unsigned char> buffer = ...;

event.AddBlock(id, buffer);

or using a pointer to a block of memory, and a length in bytes:

39

EUDAQ User Manual 5. Writing a Producer

unsigned char * buffer = ...;

event.AddBlock(id, buffer, len);

Where id is an integer used to uniquely identify the different blocks. The buffer variable
points to the actual data for the block under consideration block and can be provided
either as STL vector, where the full vector is read and sent, or as C-pointer to a memory
block where the len argument is required to specify the size.
The type of the vector or data array can be freely chosen by the user since the data
serializers are implemented as templates. However, if data types larger than char are
used, special care has to be taken for appropriate endianness of the data. This is especially
true if the producer and decoding software run on different machines which might have
different architectures.

5.3.3. Tags

RawDataEvent objects as well as other types inheriting from the Event base class also
provide the option to store tags. Tags are name-value pairs containing additional
information which does not qualify as regular DAQ data which is written in the binary
blocks. Particularily in the BORE this is very useful to store information about the exact
sensor configuration which micht be required in order to be able to decode the raw data
stored. A tag is stored as follows:

event.SetTag("Temperature", 42);

The value corresponding to the tag can be set as an arbitrary type (in this case an
integer), it will be converted to a STL string internally.

5.4. Log Messages

The logging infrastructure allows to send information, error messages or debug information
to a central point in the DAQ system to collect logging information, the Log Collector.
It is strongly encouraged to use the logging system rather than simple cout statements.
The logging class is defined in:

#include "eudaq/Logger.hh"

The following macros for sending log messages are defined, listed here in decreasing order
of severity:

EUDAQ USER : A user-generated message (e.g. from the RunControl Log button).

EUDAQ ERROR : Something that went wrong and should be fixed. Errors usually are
blocking, i.e. the data acquisition cannot be continued without fixing the cause.

EUDAQ WARN : A warning that something may not be quite right and should probably
be taken care of. Warnings are considered non-blocking, i.e. the data acquisition

40

EUDAQ User Manual 5. Writing a Producer

will proceed but some of the components might experience problems (lacking
configurations for a threshold setting would be an example).

EUDAQ INFO : An message generated during normal running containing information that
may be useful to the user.

EUDAQ EXTRA : Some extra information that may be less useful in normal running.

EUDAQ DEBUG : Information for debugging purposes that will normally be hidden and
should only be used for development purposes. Additional information for shifters
should be categorized as EUDAQ EXTRA.

They are used as follows:

EUDAQ_ERROR("No keyboard detected: press F1 to continue.");

The messages will be sent to the central Log Collector if it is connected, otherwise they
will be displayed on the local terminal. The log level can be changed in the following
way:

EUDAQ_LOG_LEVEL("WARN");

Any messages lower than the specified level will just be ignored. This can be useful to
filter out unimportant messages and, for example, just display error messages.

5.5. Interfacing Python-Code via the PyProducer Interface

As described in section 4.2.10, a Python interface is provided for selected EUDAQ
components including a Producer. This basic implementation can be extended on the
Python-side as demonstrated by the example python/example-producer.py.

41

EUDAQ User Manual 6. Data Conversion

6. Data Conversion

Data are stored on disk, by default, in a native binary format, containing the raw data as
read out by the various Producers. It is the same format used for serialising the data over
the socket connection to the Data Collector. To be legible to other software components,
this data must be converted into a standardised format so that the monitoring and
analysis software does not require specific information about the functionalities and data
encoding scheme of every detector, but can be applied generically to any sensor.
Currently, two different formats are provided for this purpose. The first is the StandardEvent
type, an EUDAQ-internal class used by the online monitoring tool and other utilities of
the framework. It is a very simplified format tailored towards pixelated tracking detectors.
The second type is the LCIO standard format from the linear collider community, which
is also used by the EUTelescope analysis software.

6.1. StandardEvent and StandardPlane

The StandardEvent is a class designed to represent pixel sensor data in a reasonably easy
to use way, but still be flexible enough to store the data from a wide range of different
sensors.
Each StandardEvent represents one event of data from the whole telescope and any
DUTs, so a run will consist of a sequence of StandardEvents. It inherits from the Event

base class, meaning that it has a run number, an event number, an optional timestamp,
and may also contain tags (see subsubsection 5.3.3).
The decoded pixel data is stored in an array of StandardPlanes, each representing one
sensor plane of the telescope or DUT. Each StandardPlane contains the charge values
from the pixels of one sensor, and may contain several frames in cases where the sensor
is read out multiple times per event. It also has the concept of a “result” frame, which is
calculated from the one or more of the source frames according to different rules that
may be specified with flags. The result frame contains only one charge value per pixel,
with a positive signal, and is what will be used for the analysis. It may consist of either
differences between the original frames (e.g. in the case of correlated double sampling
(CDS)), a sum of all original frames, or specific parts of the different frames selected
according to the pivot information. Flags may be set to select which of the different
methods is used. It may also contain a submatrix number per pixel, which can be used
to differentiate different parts of the sensor, so that they may be analyzed separately
later, and a pivot boolean (true or false) per pixel, which can be used to indicate whether
the pixel was sampled before or after the trigger, and is used to determine which parts of
the sensor to combine when the FLAG NEEDCDS flag is set.
Both the StandardEvent and the StandardPlane classes are defined in the following
header file:

#include "eudaq/StandardEvent.hh"

In general, a user should not need to construct a StandardEvent object, but should
create one or more StandardPlanes, that will be added to a given StandardEvent.

42

EUDAQ User Manual 6. Data Conversion

6.1.1. Constructor

The StandardPlane constructor has the following signature:

StandardPlane(unsigned id, const std::string & type,

const std::string & sensor = "");

Where id is an arbitrary numerical identifier for the plane that can be used to differentiate
between different planes of the same type, type is the type of the Producer that generated
the frame (should be the same as that in the Producer and the DataConverterPlugin),
and sensor is the name of the sensor, in the case that the Producer can read out more
than one type of sensor.

6.1.2. SetSizeRaw and SetSizeZS

Once a StandardPlane has been constructed, the size should be set. There are two
methods for doing this, depending on whether the data are stored in raw or zero-
suppressed mode. In raw mode all pixels are stored, whether they have a signal or not.
In zero-suppressed mode, only those with a signal above a certain threshold are stored,
along with their coordinates, and any below the threshold are suppressed.
The signature of the SetSizeRaw method is:

void SetSizeRaw(unsigned w, unsigned h, unsigned frames = 1, int flags = 0);

Where w is the full width of the sensor (in the x-direction, usually columns) in pixels, h
is the full height of the sensor (in the y-direction, usually rows) in pixels, frames is the
number of frames, and flags may be a combination of the following values, separated
by a bitwise OR (i.e. |):

FLAG NEEDCDS : Indicates that the data are in 2 or 3 frames and that neighbouring frames
should be subtracted to produce the result.

FLAG NEGATIVE : Indicates that the charge values are negative, so should be negated to
produce the result.

FLAG ACCUMULATE : Indicates that all frames should be summed to produce the result.

FLAG WITHPIVOT : Indicates that pivot information is stored per pixel, and should be
used for constructing the result.

FLAG WITHSUBMAT : Indicates that submatrix information is stored per pixel.

FLAG DIFFCOORDS : Indicates that each frame can have different coordinates, in the case
of zero-suppressed data, otherwise all frames will share the same coordinates.

The signature of the SetSizeZS method is a follows:

void SetSizeZS(unsigned w, unsigned h, unsigned npix,

unsigned frames = 1, int flags = 0);

43

EUDAQ User Manual 6. Data Conversion

Where all parameters are the same as in SetSizeRaw, but there is an extra parameter
(npix) that specifies how many pixels to preallocate. If the number of pixels above
threshold is known, this may be used to allocate them all at once. If not, then this
parameter may be set to zero, and pixels can be allocated as needed (but note that this
way may be slower, since memory will need to be reallocated for each new pixel).

6.1.3. SetPixel and PushPixel

Once the size has been set, the values of the pixels can then be loaded into the
StandardPlane. There are two methods for doing this: SetPixel, that sets the value of
an already allocated pixel, and PushPixel that allocates space for a new pixel and sets
that.
The signatures of SetPixel are as follows:

void SetPixel(unsigned index, unsigned x, unsigned y, unsigned pix,

bool pivot = false, unsigned frame = 0);

void SetPixel(unsigned index, unsigned x, unsigned y, unsigned pix,

unsigned frame);

where index is the index of the pixel to set, x and y are the coordinates of the pixel, and
pix is the charge value for the pixel. The value of the pivot, and the frame number may
optionally be set also, if relevant. Note that if only the pivot is set, care should be taken
that it is of type bool to avoid accidentally setting the frame instead.
The signatures of PushPixel are as follows:

void PushPixel(unsigned x, unsigned y, unsigned pix,

bool pivot = false, unsigned frame = 0);

void PushPixel(unsigned x, unsigned y, unsigned pix,

unsigned frame);

where all parameters are the same as in SetPixel. The only difference being the lack
of an index parameter, since this will always allocate a new pixel and append it to the
existing list.

6.1.4. Setting other information

Other than the pixel values, the StandardPlane also stores some other information that
should be set if applicable:

void SetTLUEvent(unsigned ev);

This sets the trigger ID as read out from the TLU. If it was read out and stored, it
should be set using this method to allow cross checks in the analysis.

void SetPivotPixel(unsigned p);

This sets the value of the pivot pixel (or pivot row etc. – the value is arbitrary). It is
only here to allow cross-checks in the analysis; if the pixels are to be combined using

44

EUDAQ User Manual 6. Data Conversion

the pivot information, then it should also be set in the per-pixel pivot values. The value
here cannot be used for that purpose since the order of reading out the pixels is not in
general known.

void SetFlags(FLAGS flags);

Some flags may be set after calling SetSizeRaw or SetSizeZS, but this is not possible
with the flags FLAG WITHPIVOT, FLAG WITHSUBMAT or FLAG DIFFCOORDS since these flags
affect how memory is allocated by those methods.

6.1.5. Adding Planes to the StandardEvent

Once the plane has been constructed and filled, it may be added to a StandardPlane

using the following method:

StandardPlane & AddPlane(const StandardPlane &);

This will copy the plane into the list of StandardPlanes stored by the StandardEvent.
It will return a reference to the copy of the plane, that can be used to make further
modifications if necessary.

6.1.6. Extracting information

The StandardEvent inherits the following methods from the Event base class:

unsigned GetRunNumber() const;

unsigned GetEventNumber() const;

uint64_t GetTimestamp() const;

T GetTag(const std::string & name, T def) const;

allowing access to the run number, event number, timestamp (if set) and any tags (where
T is an arbitrary type). It also has the following methods to access the StandardPlanes
that it contains:

size_t NumPlanes() const;

const StandardPlane & GetPlane(size_t i) const;

These return the number of planes stored, and a reference to a particular plane, respect-
ively. The individual planes can then be examined using the following methods:

const std::string & Type() const;

const std::string & Sensor() const;

unsigned ID() const;

unsigned TLUEvent() const;

unsigned PivotPixel() const;

These return the type of the plane (i.e. the type of Producer / DataConverter that
generated it), the type of sensor for the plane (in the case that the plane type can hold
different types of sensor data), the ID of the plane (used to differentiate different planes

45

EUDAQ User Manual 6. Data Conversion

of the same type), the TLU trigger ID for the plane (if it was read out and stored) and
the value of the pivot pixel (or pivot row) for the plane. Further information about the
plane is available in:

unsigned XSize() const;

unsigned YSize() const;

unsigned NumFrames() const;

unsigned TotalPixels() const;

unsigned HitPixels() const;

unsigned HitPixels(unsigned frame) const;

These return the full width and height of the sensor in pixels, the number of frames
stored for the plane, total number of pixels for the plane (i.e. full width × height), the
number of pixels over threshold (for zero-suppressed data) in the result frame, and the
number of pixels over threshold in a particular source frame.
Note that for the HitPixels method, there are two versions; the first takes no parameter
and returns the number of hit pixels in the result frame, while the second takes the frame
number as a parameter and returns the number of hit pixels in that frame from the
underlying source data. Normally the first version would be used, unless access is needed
to the raw data from the sensor. Similarly, the other methods for accessing the data all
have two versions:

double GetPixel(unsigned index) const;

double GetX(unsigned index) const;

double GetY(unsigned index) const;

const std::vector<pixel_t> & PixVector() const;

const std::vector<coord_t> & XVector() const;

const std::vector<coord_t> & YVector() const;

These return the charge value, the x coordinate and the y coordinate of a particular pixel
(for the first three methods), or a vector of these values for all pixels in the frame (for
the final three methods.
Here, coord t and pixel t are both double, even though the values stored are usually
integers. This is in order to make the StandardPlane as general as possible, allowing it
to store, for example, clusters with non-integer coordinates instead of pixels, and it also
makes it easier to pass the values directly into Root histograms without first having to
convert them to double. All the above methods also have a version taking the frame
number (as the second parameter if they already have one parameter), which returns the
information from the underlying source frame instead of the result frame.

6.2. LCIO and LCEvent

Another option available with the framework is the ouput of data as LCIO events. The
LCIO format is a very flexible container defined and used by the linear collider community.
The exact encoding of the data relies upon the requirements from the user and cannot
be described in a generic way.

46

EUDAQ User Manual 6. Data Conversion

Many tracking detectors rely on the additional classes provided by the EUTelescope
data analysis framework, examples for implementations can be found in the respective
converter plugins in the EUDAQ source tree.

6.3. DataConverterPlugin

In order to allow different DUTs to easily incorporate their data into the monitoring
and analysis chain, the DataConverterPlugin system was developed. This allows all the
conversion code for each producer to be kept in one file, with the necessary parts being
called automatically as needed. This section describes how to write a new converter
plugin, to use existing converter plugins see subsection 7.3.
Writing a converter plugin for a new producer involves defining a new class that derives
from the DataConverterPlugin base class and implementing a few methods. Each
converter plugin contains a unique string that defines which type of RawDataEvents it
is able to convert. This is the same string that is set in the RawDataEvent when it is
created by the relevant producer. The DataConverterPlugin class is defined in the
following header:

#include "eudaq/DataConverterPlugin.hh"

The methods to be implemented are described below, and a full example is provided in
subsection A.3.

6.3.1. Constructor

The constructor should call the DataConverterPlugin constructor, and pass as a para-
meter the string representing the type of RawDataEvent this plugin can convert. A single
static instance of the converter should then be defined, and instantiated in the source
file. This is illustrated below:

class ExampleConverterPlugin : public eudaq::DataConverterPlugin {

ExampleConverterPlugin() : eudaq::DataConverterPlugin("EXAMPLE") {

// constructor...

}

// more methods...

static ExampleConverterPlugin m_instance;

};

ExampleConverterPlugin ExampleConverterPlugin::m_instance;

this will cause the constructor to be called during initialization of the program, and the
DataConverterPlugin constructor will automatically register the plugin and make it
available in the PluginManager.

6.3.2. Initialization

Every time a new run is started, the Initialize method will be called. It has the
following signature:

47

EUDAQ User Manual 6. Data Conversion

virtual void Initialize(const Event & ev, const Configuration & c);

It receives as parameters the BORE, and the configuration used for the run. The plugin
may extract any tags from the BORE, or other information from the configuration, and
store it in member variables for use during decoding.

6.3.3. GetTriggerID

Since each producer that reads out the trigger ID from the TLU stores it differently in
the raw data, there is no general way to extract this information. The GetTriggerID

method remedies this, by providing a generic interface to access the trigger ID. The
signature is as follows:

virtual unsigned GetTriggerID(const Event & ev) const;

It receives the Event as a parameter, from which it should extract the TLU trigger ID,
and return it as an unsigned integer.

6.3.4. GetStandardEvent

This method should extract the sensor data from the RawDataEvent input parameter,
and fill in the StandardEvent by adding the appropriate number of StandardPlanes
(one per sensor plane). The method signature is:

virtual bool GetStandardSubEvent(StandardEvent & out,

const Event & in) const;

It should return true if it successfully updated the StandardEvent, or false to indicate
an error.

6.3.5. GetLCIOEvent

Similar to GetStandardEvent, the GetLCIOEvent method converts a RawDataEvent into
a standardized format, in this case LCIO. The signature is:

virtual lcio::LCEvent * GetLCIOEvent(const Event * ev) const;

It receives the RawDataEvent as a parameter, and should return a pointer to a new
LCEvent if the conversion is successful. In the event of an error, it should return a null
pointer.

48

EUDAQ User Manual 7. Other Parts of the Framework

7. Other Parts of the Framework

The EUDAQ framework contains a number of other parts that may be useful. Those
that have not already been described in previous sections will be outlined below.

7.1. FileWriter

The FileWriter part of the framework allows different file formats to be written, using a
common interface, using a plugin-like system to define new file types. The FileWriter

class defines the interface that each type must implement, and the FileWriterFactory

allows code that writes data files to select any available file type, and write it in a generic
way, without needing to know details about the particular file format. A number of
different file types are already implemented, for a list with descriptions, see page 32
The easiest way to make use of the different FileWriters, is to use the Converter.exe

program (see subsubsection 4.4.4).
The FileWriter base class is defined in the following header:

#include "eudaq/FileWriter.hh"

In order to implement a new FileWriter, a new class must be written, inheriting from
the FileWriter base class, and implementing the following methods:

virtual void StartRun(unsigned);

virtual void WriteEvent(const DetectorEvent &);

virtual uint64_t FileBytes() const;

The StartRun method is called at the start of each new run with the run number as
a parameter. This allows a new file to be opened, and any header information to be
written if necessary. Then the WriteEvent method is called for each event to be written.
Here the DetectorEvent can be decoded and processed and the necessary data written
to file. The FileBytes method should return the number of bytes written to the file.
However, it is optional, and may simply return zero if the actual size is not easily known.

7.2. FileReader

Although tools are provided to access the information in the native data files, and
to convert them to other formats (such as LCIO, for analysis with the EUTelescope
package), in some cases it may be preferable to access the native data directly. For this,
the FileReader class is provided, allowing a custom program to be written to access a
native file and process it as desired.
The constructor takes as an argument the name of the file to be opened, and will read
the first event from the file (which should be the BORE). The NextEvent() method can
then be called to advance through the file. It can optionally take as a parameter the
number of events to skip, and will return true as long as a new event was read. The
currently loaded event can be accessed with the GetDetectorEvent() method.

49

EUDAQ User Manual 7. Other Parts of the Framework

The basic usage is shown below, while a more complete example is available in subsec-
tion A.4:

#include "eudaq/FileReader.hh"

#include <iostream>

int main(int argc, char ** argv) {

if (argc != 2) {

std::cerr << "usage: " << argv[0] << " file" << std::endl;

return 1;

}

eudaq::FileReader reader(argv[1]);

std::cout << "Opened file: " << reader.Filename() << std::endl;

std::cout << "BORE:\n" << reader.GetDetectorEvent() << std::endl;

while (reader.NextEvent()) {

std::cout << reader.GetDetectorEvent() << std::endl;

}

return 0;

}

This will open the file specified on the command line, and print out a summary of all the
events in there. Be aware that running it as it is may generate a large amount of output,
especially with large data files.

7.3. PluginManager

The PluginManager handles the different DataConverterPlugins, allowing raw data
stored in a RawDataEvent to be easily converted to a StandardEvent or LCEvent without
having to know the details of all the detector types in there. It is defined in the following
header:

#include "eudaq/PluginManager.hh"

In order to convert the events correctly, the plugins must have access to the information
in the BORE. Therefore, before any events may be converted, and for each data file, the
PluginManager must be initialized as follows:

eudaq::PluginManager::Initialize(bore);

The PluginManager will take care of passing the relevant parts of the BORE to the
appropriate DataConverterPlugins. The DetectorEvents can then be converted as
follows:

eudaq::StandardEvent sev = eudaq::PluginManager::ConvertToStandard(dev);

The PluginManager will take care of splitting the DetectorEvent into its constituent
subevents, and passing them all to the appropriate DataConverterPlugins to be in-
serted into the returned StandardEvent. For a slightly more complete example of the
PluginManager, see the ExampleReader in subsection A.4.

50

EUDAQ User Manual 7. Other Parts of the Framework

7.4. OptionParser

The OptionParser is used to simplify parsing of command-line options. It provides a
way to specify which arguments a program accepts, with the types, default values and
descriptions, so that the help text can be automatically generated, and therefore is always
in sync with the code, and all command line programs can have a uniform interface.
All programs using the OptionParser will automatically provide a -h (and --help)
option to display the help text, as well as a -v (and --version) option to display the
program version, unless the program explicitly overrides these options with other ones
with the same names.
The OptionParser is the class that handles the actual parsing of the command line. The
signature of the constructor is as follows:

OptionParser(const std::string & name, const std::string & version,

const std::string & desc="", int minargs = -1, int maxargs = -1);

The first three arguments are the program name, version and (optionally) description,
and these are optionally followed by two numbers specifying the number of arguments
expected after the command line options. The default value of -1 for the minimum means
no arguments are allowed, and for the maximum means that an arbitrary number may
be given (i.e. there is no explicit maximum).
If the automatically generated help text is not sufficient, extra text may also be given to
display at the end of the help text, by passing it to the following method:

void OptionParser::ExtraHelpText(const std::string & text);

This can be used to provide extra information about the options to the program.
Once an OptionParser object has been constructed, the different options may be specified.
There are two types: OptionFlag, which specifies a simple option with no argument,
and the template Option<T>, which specifies an option taking an argument of type T.
The OptionFlag constructor has the following signature:

OptionFlag(OptionParser & op, const std::string & shortname,

const std::string & longname, const std::string & desc = "");

where op is a reference to the OptionParser object created previously, that will do the
actual parsing of the command line. It then takes two names: a short version (usually
a single character) that is used with a single hyphen, and a long version that must be
preceded by two hyphens on the command line. Finally, a description may be given that
will be displayed in the help text.
The Option constructor has the following two signatures, one for normal types, the other
for vectors of another type:

Option<T>(OptionParser & op, const std::string & shortname,

const std::string & longname, const T & deflt = T(),

const std::string & argname = "", const std::string & desc = "");

Option<std::vector<T> >(OptionParser & op, const std::string & shortname,

const std::string & longname, const std::string & argname = "",

51

EUDAQ User Manual 7. Other Parts of the Framework

const std::string & sep = "", const std::string & desc = "");

where, in both cases, the first three arguments are as for OptionFlag. The first constructor
then takes a default value that will be used in the case the option is not specified on
the command line, a name for the argument to the option (to be used in the help text),
and a description of the option. The vector version also takes an argument name and a
description, but no default value (the default is always an empty vector), instead it takes
a separator, which is the string used to separate multiple elements of the vector on the
command line. By default (or if an empty string is specified), a comma will be used.
Once all the options have been specified, the command line can be parsed, which is done
by calling the following method of the OptionParser object:

OptionParser & OptionParser::Parse(const char ** args);

as an argument it takes the list of arguments from the command line (by convention
usually called argv). If there is an error during parsing, an exception may be thrown;
this should be handled by the HandleMainException method as described below.
Afterwards the values of the options can be accessed using their Value() method. The
IsSet() method is also available to tell whether an option has been set on the command
line (for OptionFlags this will hold the same value as the Value() method).
Finally, the OptionParser has a HandleMainException method that provides a way to
catch any unhandled exceptions, and either display help if it is a problem with parsing
the command line, or otherwise display a standard text informing the user of a problem.
It will also catch exceptions of type MessageException and display the message, without
treating it as an error, so this can be used to exit the program with a message to the
user. It is recommended to put the main program inside a try block, then call the
HandleMainException method from a catch(...) block, after any other exceptions
have been handled (if necessary).
An example use is shown below, illustrating most of what is described above:

1 #include "eudaq/OptionParser.hh"

2 #include "eudaq/Utils.hh"

3 #include <iostream>

4

5 int main(int /*argc*/, char ** argv) {

6 eudaq::OptionParser op("Example", "1.0", "An example program", 0);

7 eudaq::OptionFlag test(op, "t", "test", "Enable test");

8 eudaq::Option<double> example(op, "e", "example", 3.14, "value",

9 "Example parameter");

10 eudaq::Option<std::vector<int> > another(op, "a", "another", "values", ";",

11 "Example vector");

12 op.ExtraHelpText("Some more information about this");

13 try {

14 op.Parse(argv);

15 std::cout << "Test: " << (test.IsSet() ? "Enabled\n" : "Disabled\n")

16 << "Example: " << example.Value() << "\n"

52

EUDAQ User Manual 7. Other Parts of the Framework

17 << "Another: " << eudaq::to_string(another.Value(), ", ")

18 << std::endl;

19 if (op.NumArgs() == 0) {

20 throw(eudaq::MessageException("No arguments were given"));

21 }

22 for (unsigned i = 0; i < op.NumArgs(); ++i) {

23 std::cout << "Argument " << (i+1) << ": " << op.GetArg(i) << std::endl;

24 }

25 } catch(...) {

26 return op.HandleMainException();

27 }

28 return 0;

29 }

Running this program produces the following output:

./OptionExample.exe -h

Example version 1.0

An example program

usage: ./OptionExample.exe [options] [0 or more arguments]

options:

-t --test

Enable test

-e --example <value> (default = 42)

Example parameter

-a --another <values> (default =)

Example vector

Some more information about this program.

./OptionExample.exe

Test: Disabled

Example: 42

Another:

No arguments were given

./OptionExample.exe -t -e 2.718 -a 1;2;3 foo bar

Test: Enabled

Example: 2.718

Another: 1, 2, 3

Argument 1: foo

Argument 2: bar

53

EUDAQ User Manual 7. Other Parts of the Framework

7.5. Timer

The Timer class wraps the underlying operating system’s timer functions, making them
easier to use in a platform independent way. Whenever a Timer object is created, it will
record the current time. Then at any time in the future, the elapsed time in seconds
may be accesses with the Seconds() method.
There is also a Stop() method to stop the timer counting, so any subsequent calls to
Seconds will return the same value, and a Restart() method to reset the timer’s start
time to the current time and start counting again. An example use is shown below:

#include "eudaq/Timer.hh"

Timer t;

function_a();

cout << "Function A took " << t.Seconds() << " seconds." << endl;

t.Restart();

function_b();

cout << "Function B took " << t.Seconds() << " seconds." << endl;

// wait 3 microseconds

t.Restart();

while (t.Seconds() < 3e-6) {

// do nothing

}

This shows a timer being used to measure the execution time of two functions, and to
wait for a small delay. Usually to wait for a delay, it is preferable to use sleep (or mSleep,
see subsubsection 7.6.4), but in most operating systems the minimum delay for a sleep
is around 20 ms (even when using usleep which has microsecond resolution) so if the
delay must be shorter, a busy loop like above is needed.

7.6. Utils

The Utils package is a collection of useful functions and classes too small to merit their
own individual files. It is used by including the header:

#include "eudaq/Utils.hh"

Some of the most useful parts are described here.

7.6.1. to string

This is a template function that takes (almost) any type and returns the value converted
to a string. An optional second argument specifies the minimum number of digits to use
(padding with zeroes if necessary).

int value = 123;

strfunction(to_string(value));

strfunction(to_string(value, 6));

54

EUDAQ User Manual 7. Other Parts of the Framework

This will pass first the string "123", and then the string "000123" to the function
strfunction.

7.6.2. from string

This template function is the inverse of to string. It takes as arguments a string and a
default value of type T, and returns an object of type T initialised from the string. If it
is not possible to convert the string to the required type, the default value is returned
instead.

std::string value = "456";

intfunction(from_string(value, 0));

This will call intfunction with the integer value 456.

7.6.3. hexdec

This is a class to facilitate printing numbers in both hexadecimal and decimal. It is
used similarly to to string, but when printed, it will display the value in hexadecimal,
followed by the value in decimal in parentheses. The hexadecimal values will be padded
to the full width of the type, unless a second argument is given specifying the minimum
number of hex digits to display.

short value = 789;

cout << hexdec(value) << endl

<< hexdec(value, 0) << endl;

This will display:

0x0315 (789)

0x315 (789)

If the result is required in a string, instead of being printed, this can be achieved with
to_string(hexdec(value)).

7.6.4. mSleep

This is a wrapper around the operating system’s sleep/usleep (or equivalent) function.
It takes as an argument the number of milliseconds to sleep. The advantage of this
function is that it will work on Linux, Mac OS X and Windows, as it will automatically
call the correct underlying function.

55

EUDAQ User Manual 8. Reporting Issues

8. Reporting Issues

The GitHub server, on which EUDAQ is hosted, provides a system for reporting bugs
and for requesting new features. It is accessible at the following address:
https://github.com/eudaq/eudaq/issues.
Here you may submit new reports (you are required to register first to do this), or follow
the status of existing bugs and feature requests. This is recommended over (or at least, as
well as) sending an email to the developers, as it ensures a record of the issue is available,
and others may follow the progress.

56

https://github.com/eudaq/eudaq/issues

EUDAQ User Manual 9. Developing and Contributing to EUDAQ

9. Developing and Contributing to EUDAQ

9.1. Regression Testing

If a CMake version later than 2.8.0 is found and Python is installed together with the
numpy package, several regression tests are made available that can be executed through
CTest. The tests are based on the Python wrapper around EUDAQ components as
described in section 4.2.10. Run the tests by typing

cd build

cmake ..

ctest

This starts the script etc/tests/run dummydataproduction.py which runs a short
DAQ session with instances of RunControl, DataCollector and a (dummy) Producer and
compares the output to a reference file stored on AFS at DESY. If your system is set up
correctly, you have access to the reference file, and the basic components of the EUDAQ
library work, all tests should pass. To see the output of failing tests, you can add the
--output-on-failure parameter to the CTest command.
These basic tests can easily be extended to test other parts of the core framework or of
your own producer. Take a look at the etc/tests/testing.cmake CMake script and
the central CMakeLists.txt file where it is included for an example of how to set up
tests with CTest.
The automated nightly tests are defined in CMake scripts located in etc/tests/nightly

and are executed by the scripts run nightly.sh and run nightly.bat for Unix and
Windows platforms, respectively. In addition to the dummy run described above, the
nightly tests check out all changes from the central repository, build the full code base,
and submit all results to the CDash webserver hosted at DESY: http://aidasoft.desy.
de/CDash/index.php?project=EUDAQ

9.2. Commiting Code to the Main Repository

If you would like to contribute your code back into the main repository, please follow the
“fork & pull request” strategy:

• Create a user account on github, log in

• “Fork” the (main) project on github (using the button on the page of the main
repo)

• Either : clone from the newly forked project and add ’upstream’ repository to local
clone (change user names in URLs accordingly):

git clone https://github.com/hperrey/eudaq eudaq

cd eudaq

git remote add upstream https://github.com/eudaq/eudaq.git

57

http://aidasoft.desy.de/CDash/index.php?project=EUDAQ
http://aidasoft.desy.de/CDash/index.php?project=EUDAQ

EUDAQ User Manual 9. Developing and Contributing to EUDAQ

• or if edits were made to a previous checkout of upstream: rename origin to upstream,
add fork as new origin:

cd eudaq

git remote rename origin upstream

git remote add origin https://github.com/hperrey/eudaq

git remote -v show

• Optional: edit away on your local clone! But keep in sync with the development in
the upstream repository by running

git fetch upstream # download named heads or tags

git pull upstream master # merge changes into your branch

on a regular basis. Replace master by the appropriate branch if you work on a
separate one. Don’t forget that you can refer to issues in the main repository
anytime by using the string eudaq/eudaq#XX in your commit messages, where XX

stands for the issue number, e.g.

[...]. this addresses issue eudaq/eudaq#1

• Push the edits to origin (our fork)

git push origin

(defaults to git push origin master where origin is the repo and master the
branch)

• Verify that your changes made it to your github fork and then click there on the
“compare & pull request” button

• Summarize your changes and click on “send”

• Thank you!

Working together on a branch: If you have a copy installed, and want to update it to the
latest version, you do not need to clone the repository again, just change to the eudaq

directory use the command:

git pull

to update your local copy with all changes commited to the central repository.

58

EUDAQ User Manual A. Source Code

A. Source Code

This section contains example code to illustrate the concepts in the manual, when they
are too long to be included in the main section.
All files are also present in the EUDAQ distribution; so if possible those versions should be
used, since they may be more up to date than the manual.

A.1. Example Config File

Latest version available at:
https://github.com/eudaq/eudaq/blob/master/conf/ExampleConfig.conf

1 # This is an example config file, you can adapt it to your needs.

2 # All text following a # character is treated as comments

3

4 [RunControl]

5 RunSizeLimit = 1000000000

6

7 [DataCollector]

8 FilePattern = "../data/run$6R$X"
9

10 [LogCollector]

11 SaveLevel = EXTRA

12 PrintLevel = INFO

13

14 [Producer.Example]

15 ConfParameter = 123

16

17 [Producer.TLU]

18 AndMask = 0xf

19 OrMask = 0

20 VetoMask = 0

21 DutMask = 20

22 TriggerInterval = 0

23 TrigRollover = 0

24 #DUTInput3=LEMO

59

https://github.com/eudaq/eudaq/blob/master/conf/ExampleConfig.conf

EUDAQ User Manual A. Source Code

A.2. Example Producer

Latest version available at:
https://github.com/eudaq/eudaq/blob/master/main/exe/src/ExampleProducer.cxx

1 #include "eudaq/Configuration.hh"

2 #include "eudaq/Producer.hh"

3 #include "eudaq/Logger.hh"

4 #include "eudaq/RawDataEvent.hh"

5 #include "eudaq/Timer.hh"

6 #include "eudaq/Utils.hh"

7 #include "eudaq/OptionParser.hh"

8 #include "eudaq/ExampleHardware.hh"

9 #include <iostream>

10 #include <ostream>

11 #include <vector>

12

13 #include "eudaq/Status.hh"

14

15 // A name to identify the raw data format of the events generated

16 // Modify this to something appropriate for your producer.

17 static const std::string EVENT_TYPE = "Example";

18

19 // Declare a new class that inherits from eudaq::Producer

20 class ExampleProducer : public eudaq::Producer {

21 public:

22

23 // The constructor must call the eudaq::Producer constructor with the name

24 // and the runcontrol connection string, and initialize any member ←↩
variables.

25 ExampleProducer(const std::string & name, const std::string & runcontrol)

26 : eudaq::Producer(name, runcontrol),

27 m_run(0), m_ev(0), stopping(false), done(false) {}

28

29 // This gets called whenever the DAQ is initialised

30 virtual void OnInitialise(const eudaq::Configuration & init) {

31 try {

32 std::cout << "Reading: " << init.Name() << std::endl;

33

34 // Do any initialisation of the hardware here

35 // "start-up configuration", which is usally done only once in the ←↩
beginning

36 // Configuration file values are accessible as config.Get(name, ←↩
default)

37 m_exampleInitParam = init.Get("InitParameter", 0);

38

39 // send information

60

https://github.com/eudaq/eudaq/blob/master/main/exe/src/ExampleProducer.cxx

EUDAQ User Manual A. Source Code

40 // Message as cout in the terminal of your producer

41 std::cout << "Initialise with parameter = " << m_exampleInitParam << ←↩
std::endl;

42 // or to the LogCollector, depending which log level you want. These ←↩
are the possibilities just as an example here:

43 EUDAQ_INFO("Initialise with parameter = " + m_exampleInitParam);

44 //EUDAQ_DEBUG("Debug Message to the LogCollector from ←↩
ExampleProducer");

45 //EUDAQ_EXTRA("Extra Message to the LogCollector from ←↩
ExampleProducer");

46 //EUDAQ_INFO("Info Message to the LogCollector from ExampleProducer");

47 //EUDAQ_WARN("Warn Message to the LogCollector from ExampleProducer");

48 //EUDAQ_ERROR("Error Message to the LogCollector from ←↩
ExampleProducer");

49 //EUDAQ_USER("User Message to the LogCollector from ExampleProducer");

50

51 // EUDAQ_THROW throws an error, thus here goes to catch! With that ←↩
you can simulate errors...

52 //EUDAQ_THROW("User Message to the LogCollector from ExampleProducer");

53

54 // send it to your hardware

55 hardware.Setup(m_exampleInitParam);

56

57 // At the end, set the ConnectionState that will be displayed in the ←↩
Run Control.

58 // and set the state of the machine.

59 SetConnectionState(eudaq::ConnectionState::STATE_UNCONF, ←↩
"Initialised (" + init.Name() + ")");

60 }

61 catch (...) {

62 // Message as cout in the terminal of your producer

63 std::cout << "Unknown exception" << std::endl;

64 // Message to the LogCollector

65 EUDAQ_ERROR("Error Message to the LogCollector from ExampleProducer");

66 // Otherwise, the State is set to ERROR

67 SetConnectionState(eudaq::ConnectionState::STATE_ERROR, ←↩
"Initialisation Error");

68 }

69 }

70

71 // This gets called whenever the DAQ is configured

72 virtual void OnConfigure(const eudaq::Configuration & config) {

73 try {

74 std::cout << "Reading: " << config.Name() << std::endl;

75

76 // Do any configuration of the hardware here

61

EUDAQ User Manual A. Source Code

77 // Configuration file values are accessible as config.Get(name, ←↩
default)

78 m_exampleConfParam = config.Get("ConfParameter", 0);

79 std::cout << "Example Configuration Parameter = " << ←↩
m_exampleConfParam << std::endl;

80 hardware.Setup(m_exampleConfParam);

81

82 // At the end, set the ConnectionState that will be displayed in the ←↩
Run Control.

83 // and set the state of the machine.

84 SetConnectionState(eudaq::ConnectionState::STATE_CONF, "Configured ←↩
(" + config.Name() + ")");

85 }

86 catch (...) {

87 // Otherwise, the State is set to ERROR

88 printf("Unknown exception\n");

89 SetConnectionState(eudaq::ConnectionState::STATE_ERROR, ←↩
"Configuration Error");

90 }

91 }

92

93 // This gets called whenever a new run is started

94 // It receives the new run number as a parameter

95 // And sets the event number to 0 (internally)

96 virtual void OnStartRun(unsigned param) {

97 try {

98

99 m_run = param;

100 m_ev = 0;

101

102 std::cout << "Start Run: " << m_run << std::endl;

103

104 // It must send a BORE (Begin-Of-Run Event) to the Data Collector

105 eudaq::RawDataEvent bore(eudaq::RawDataEvent::BORE(EVENT_TYPE, m_run));

106 // You can set tags on the BORE that will be saved in the data file

107 // and can be used later to help decoding

108 bore.SetTag("EXAMPLE", eudaq::to_string(m_exampleConfParam));

109 // Starting your hardware

110 hardware.PrepareForRun();

111 // Send the event to the Data Collector

112 SendEvent(bore);

113

114 // At the end, set the ConnectionState that will be displayed in the ←↩
Run Control.

115 SetConnectionState(eudaq::ConnectionState::STATE_RUNNING, "Running");

116 }

62

EUDAQ User Manual A. Source Code

117 catch (...) {

118 // Otherwise, the State is set to ERROR

119 printf("Unknown exception\n");

120 SetConnectionState(eudaq::ConnectionState::STATE_ERROR, "Starting ←↩
Error");

121 }

122 }

123

124 // This gets called whenever a run is stopped

125 virtual void OnStopRun() {

126 try {

127 // Set a flag to signal to the polling loop that the run is over and ←↩
it is in the stopping process

128 stopping = true;

129

130 // wait until all events have been read out from the hardware

131 while (stopping) {

132 eudaq::mSleep(20);

133 //std::cout<<"Does hardware have pending? ←↩
"<<hardware.EventsPending()<<"\n";

134 }

135 // Send an EORE after all the real events have been sent

136 // You can also set tags on it (as with the BORE) if necessary

137 SendEvent(eudaq::RawDataEvent::EORE("Test", m_run, ++m_ev));

138

139 // At the end, set the ConnectionState that will be displayed in the ←↩
Run Control.

140 // Due to the definition of FSM, it should go to STATE_CONF.

141 if (m_connectionstate.GetState() != ←↩
eudaq::ConnectionState::STATE_ERROR)

142 SetConnectionState(eudaq::ConnectionState::STATE_CONF);

143 }

144 catch (...) {

145 // Otherwise, the State is set to ERROR

146 printf("Unknown exception\n");

147 SetConnectionState(eudaq::ConnectionState::STATE_ERROR, "Stopping ←↩
Error");

148 }

149 }

150

151 // This gets called when the Run Control is terminating,

152 // we should also exit.

153 virtual void OnTerminate() {

154 std::cout << "Terminating..." << std::endl;

155 done = true;

156 }

63

EUDAQ User Manual A. Source Code

157

158 // This loop is running in the main

159 // This is just an example, adapt it to your hardware

160 void ReadoutLoop() {

161 try {

162 // Loop until Run Control tells us to terminate using the done flag

163 while (!done) {

164 if (!hardware.EventsPending()) {

165 // No events are pending, so check if the run is stopping

166 if (stopping) {

167 // if so, signal that there are no events left

168 stopping = false;

169 }

170 // Now sleep for a bit, to prevent chewing up all the CPU

171 eudaq::mSleep(20);

172 // Then restart the loop

173 continue;

174 }

175 // If the Producer is not in STATE_RUNNING, it will restart the loop

176 if (GetConnectionState() != eudaq::ConnectionState::STATE_RUNNING) {

177 // Now sleep for a bit, to prevent chewing up all the CPU

178 eudaq::mSleep(20);

179 // Then restart the loop

180 continue;

181 }

182

183 // If we get here, there must be data to read out

184 // Create a RawDataEvent to contain the event data to be sent

185 eudaq::RawDataEvent ev(EVENT_TYPE, m_run, m_ev);

186

187 for (unsigned plane = 0; plane < hardware.NumSensors(); ++plane) {

188 // Read out a block of raw data from the hardware

189 std::vector<unsigned char> buffer = hardware.ReadSensor(plane);

190 // Each data block has an ID that is used for ordering the ←↩
planes later

191 // If there are multiple sensors, they should be numbered ←↩
incrementally

192

193 // Add the block of raw data to the event

194 ev.AddBlock(plane, buffer);

195 }

196 hardware.CompletedEvent();

197 // Send the event to the Data Collector

198 SendEvent(ev);

199 // Now increment the event number

200 m_ev++;

64

EUDAQ User Manual A. Source Code

201 }

202 }

203 catch (...) {

204 // Otherwise, the State is set to ERROR

205 printf("Unknown exception\n");

206 SetConnectionState(eudaq::ConnectionState::STATE_ERROR, "Error ←↩
during running");

207 }

208 }

209

210 private:

211 // This is just a dummy class representing the hardware

212 // It here basically that the example code will compile

213 // but it also generates example raw data to help illustrate the decoder

214 eudaq::ExampleHardware hardware;

215 unsigned m_run, m_ev, m_exampleConfParam, m_exampleInitParam;

216 bool stopping, done;

217 };

218

219 // The main function that will create a Producer instance and run it

220 int main(int /*argc*/, const char ** argv) {

221 // You can use the OptionParser to get command-line arguments

222 // then they will automatically be described in the help (-h) option

223 eudaq::OptionParser op("EUDAQ Example Producer", "1.0",

224 "Just an example, modify it to suit your own needs");

225 eudaq::Option<std::string> rctrl(op, "r", "runcontrol",

226 "tcp://localhost:44000", "address",

227 "The address of the RunControl.");

228 eudaq::Option<std::string> level(op, "l", "log-level", "NONE", "level",

229 "The minimum level for displaying log messages locally");

230 eudaq::Option<std::string> name (op, "n", "name", "Example", "string",

231 "The name of this Producer");

232 try {

233 // This will look through the command-line arguments and set the options

234 op.Parse(argv);

235 // Set the Log level for displaying messages based on command-line

236 EUDAQ_LOG_LEVEL(level.Value());

237 // Create a producer

238 ExampleProducer producer(name.Value(), rctrl.Value());

239 // And set it running...

240 producer.ReadoutLoop();

241 // When the readout loop terminates, it is time to go

242 std::cout << "Quitting" << std::endl;

243 } catch (...) {

244 // This does some basic error handling of common exceptions

245 return op.HandleMainException();

65

EUDAQ User Manual A. Source Code

246 }

247 return 0;

248 }

66

EUDAQ User Manual A. Source Code

A.3. Example DataConverterPlugin

Latest version available at:
https://github.com/eudaq/eudaq/blob/master/main/lib/plugins/ExampleConverterPlugin.cc

1 #include "eudaq/DataConverterPlugin.hh"

2 #include "eudaq/StandardEvent.hh"

3 #include "eudaq/Utils.hh"

4

5 // All LCIO-specific parts are put in conditional compilation blocks

6 // so that the other parts may still be used if LCIO is not available.

7 #if USE_LCIO

8 #include "IMPL/LCEventImpl.h"

9 #include "IMPL/TrackerRawDataImpl.h"

10 #include "IMPL/LCCollectionVec.h"

11 #include "lcio.h"

12 #endif

13

14 namespace eudaq {

15

16 // The event type for which this converter plugin will be registered

17 // Modify this to match your actual event type (from the Producer)

18 static const char *EVENT_TYPE = "Example";

19

20 // Declare a new class that inherits from DataConverterPlugin

21 class ExampleConverterPlugin : public DataConverterPlugin {

22

23 public:

24 // This is called once at the beginning of each run.

25 // You may extract information from the BORE and/or configuration

26 // and store it in member variables to use during the decoding later.

27 virtual void Initialize(const Event &bore, const Configuration &cnf) {

28 m_exampleparam = bore.GetTag("EXAMPLE", 0);

29 #ifndef WIN32 // some linux Stuff //$$change
30 (void)cnf; // just to suppress a warning about unused parameter cnf

31 #endif

32 }

33

34 // This should return the trigger ID (as provided by the TLU)

35 // if it was read out, otherwise it can either return (unsigned)-1,

36 // or be left undefined as there is already a default version.

37 virtual unsigned GetTriggerID(const Event &ev) const {

38 static const unsigned TRIGGER_OFFSET = 8;

39 // Make sure the event is of class RawDataEvent

40 if (const RawDataEvent *rev = dynamic_cast<const RawDataEvent *>(&ev)) {

41 // This is just an example, modified it to suit your raw data format

42 // Make sure we have at least one block of data, and it is large enough

67

https://github.com/eudaq/eudaq/blob/master/main/lib/plugins/ExampleConverterPlugin.cc

EUDAQ User Manual A. Source Code

43 if (rev->NumBlocks() > 0 &&

44 rev->GetBlock(0).size() >= (TRIGGER_OFFSET + sizeof(short))) {

45 // Read a little-endian unsigned short from offset TRIGGER_OFFSET

46 return getlittleendian<unsigned short>(

47 &rev->GetBlock(0)[TRIGGER_OFFSET]);

48 }

49 }

50 // If we are unable to extract the Trigger ID, signal with (unsigned)-1

51 return (unsigned)-1;

52 }

53

54 // Here, the data from the RawDataEvent is extracted into a StandardEvent.

55 // The return value indicates whether the conversion was successful.

56 // Again, this is just an example, adapted it for the actual data layout.

57 virtual bool GetStandardSubEvent(StandardEvent &sev,

58 const Event &ev) const {

59 // If the event type is used for different sensors

60 // they can be differentiated here

61 std::string sensortype = "example";

62 // Create a StandardPlane representing one sensor plane

63 int id = 0;

64 StandardPlane plane(id, EVENT_TYPE, sensortype);

65 // Set the number of pixels

66 int width = 100, height = 50;

67 plane.SetSizeRaw(width, height);

68 // Set the trigger ID

69 plane.SetTLUEvent(GetTriggerID(ev));

70 // Add the plane to the StandardEvent

71 sev.AddPlane(plane);

72 // Indicate that data was successfully converted

73 return true;

74 }

75

76 #if USE_LCIO

77 // This is where the conversion to LCIO is done

78 virtual lcio::LCEvent *GetLCIOEvent(const Event * /*ev*/) const {

79 return 0;

80 }

81 #endif

82

83 private:

84 // The constructor can be private, only one static instance is created

85 // The DataConverterPlugin constructor must be passed the event type

86 // in order to register this converter for the corresponding conversions

87 // Member variables should also be initialized to default values here.

88 ExampleConverterPlugin()

68

EUDAQ User Manual A. Source Code

89 : DataConverterPlugin(EVENT_TYPE), m_exampleparam(0) {}

90

91 // Information extracted in Initialize() can be stored here:

92 unsigned m_exampleparam;

93

94 // The single instance of this converter plugin

95 static ExampleConverterPlugin m_instance;

96 }; // class ExampleConverterPlugin

97

98 // Instantiate the converter plugin instance

99 ExampleConverterPlugin ExampleConverterPlugin::m_instance;

100

101 } // namespace eudaq

69

EUDAQ User Manual A. Source Code

A.4. Example Reader

Latest version available at:
https://github.com/eudaq/eudaq/blob/master/main/exe/src/ExampleReader.cxx

1 #include "eudaq/FileReader.hh"

2 #include "eudaq/PluginManager.hh"

3 #include "eudaq/OptionParser.hh"

4 #include <iostream>

5

6 static const std::string EVENT_TYPE = "Example";

7

8 int main(int /*argc*/, const char ** argv) {

9 // You can use the OptionParser to get command-line arguments

10 // then they will automatically be described in the help (-h) option

11 eudaq::OptionParser op("EUDAQ Example File Reader", "1.0",

12 "Just an example, modify it to suit your own needs",

13 1);

14 eudaq::OptionFlag doraw(op, "r", "raw", "Display raw data from events");

15 eudaq::OptionFlag docon(op, "c", "converted", "Display converted events");

16 try {

17 // This will look through the command-line arguments and set the options

18 op.Parse(argv);

19

20 // Loop over all filenames

21 for (size_t i = 0; i < op.NumArgs(); ++i) {

22

23 // Create a reader for this file

24 eudaq::FileReader reader(op.GetArg(i));

25

26 // Display the actual filename (argument could have been a run number)

27 std::cout << "Opened file: " << reader.Filename() << std::endl;

28

29 // The BORE is now accessible in reader.GetDetectorEvent()

30 if (docon.IsSet()) {

31 // The PluginManager should be initialized with the BORE

32 eudaq::PluginManager::Initialize(reader.GetDetectorEvent());

33 }

34

35 // Now loop over all events in the file

36 while (reader.NextEvent()) {

37 if (reader.GetDetectorEvent().IsEORE()) {

38 std::cout << "End of run detected" << std::endl;

39 // Don't try to process if it is an EORE

40 break;

41 }

42

70

https://github.com/eudaq/eudaq/blob/master/main/exe/src/ExampleReader.cxx

EUDAQ User Manual A. Source Code

43 if (doraw.IsSet()) {

44 // Display summary of raw event

45 //std::cout << reader.GetDetectorEvent() << std::endl;

46

47 try {

48 // Look for a specific RawDataEvent, will throw an exception if ←↩
not found

49 const eudaq::RawDataEvent & rev =

50 reader.GetDetectorEvent().GetRawSubEvent(EVENT_TYPE);

51 // Display summary of the Example RawDataEvent

52 std::cout << rev << std::endl;

53 } catch (const eudaq::Exception &) {

54 std::cout << "No " << EVENT_TYPE << " subevent in event "

55 << reader.GetDetectorEvent().GetEventNumber()

56 << std::endl;

57 }

58 }

59

60 if (docon.IsSet()) {

61 // Convert the RawDataEvent into a StandardEvent

62 eudaq::StandardEvent sev =

63 eudaq::PluginManager::ConvertToStandard(reader.GetDetectorEvent());

64

65 // Display summary of converted event

66 std::cout << sev << std::endl;

67 }

68 }

69 }

70

71 } catch (...) {

72 // This does some basic error handling of common exceptions

73 return op.HandleMainException();

74 }

75 return 0;

76 }

71

EUDAQ User ManualB. Introduction to the build system and project files on Windows

B. Introduction to the build system and project files on
Windows

B.1. MSBUILD

This is the program that processes the project (solution) files and feeds it to the compiler
and linker. If you have a working project file it is more or less straight forward. It has a
very simple syntax:

MSBUILD.exe MyApp.sln /t:Rebuild /p:Configuration=Release

myApp.sln is the file you want to Process. The parameter /target (short /t) tells
msbuild what to do in this case rebuild. You have all the options you need like: clean,
build and rebuild. You can also specify your own targets. With the “parameter property”
switch you can change the properties of your Project. Let’s say you want to compile
EUDAQ, you go in the build folder where the solution (sln) file is and type:

MSBUILD.exe EUDAQ.sln /p:Configuration=Release

One thing one has to keep in mind is that there are some default configurations. The
default is a debug build for x86. If you want to have it different then you need to specify
it in the command line. And one thing you want to have is a release build! With the /p
switch you can overwrite properties like in this case the configuration. But you could
also overwrite the compiler version it should use. Let’s say you want to use VS 2013 then
you have to specify it by writing:

MSBUILD.exe EUDAQ.sln /p:PlatformToolset=v120 /p:Configuration=Release

But be careful when changing the compiler settings. It is possible that some then link
against an incompatible version of your external libraries.

B.2. Project Files

Project files are the Visual Studio equivalent to Makefiles. The Project files have a very
easy syntax but a complicated mechanism behind it. Making changes to an existing file
is very easy. Writing a new one from scratch is expert level. But also, in most cases,
pointless because CMake does it for you. Therefore usually one gets a finished Project
file that was auto created by CMake and one just wants to make some minor changes to
it, therefore it is enough to know where one can tweak around.
Please remember to adjust the CMake files when you are done accordingly, so that your
changes are reproduced and not overwritten on the next CMake run.
Let’s start easy and assume you want to change the output directory. You can do this
by adding the following line to the corresponding Property group.

<PropertyGroup ←↩
Condition=” '$(Configuration) |$(Platform)'=='Release |Win32'”>

<OutDir>. .\ . .\Windows Binaries\</OutDir>

72

EUDAQ User ManualB. Introduction to the build system and project files on Windows

</PropertyGroup>

Or let’s say you want to change the compiler version. You can do this by changing the
platform toolset to the version you need. You can find this option in

<PropertyGroup ←↩
Condition=” '$(Configuration) |$(Platform)'=='Debug |Win32'” ←↩
Label=”Configuration”>

. . .
<PlatformToolset>v110</PlatformToolset>
</PropertyGroup>

V110 stands for Visual Studio 2012. V120 stands for VS 2013 and so on. The next
interesting switches are in here:

<ItemDefinitionGroup Condition=” '$(Configuration) |$(Platform)'=='Debug|Win32'”>
<ClCompile>

<PrecompiledHeader></PrecompiledHeader>
<WarningLevel>Level3</WarningLevel>
<Optimization>Disabled</Optimization>
<PreprocessorDefinitions>

WIN32;
DEBUG;
CONSOLE;
%(PreprocessorDefinitions)

</PreprocessorDefinitions>
<AdditionalIncludeDirectories>

. .\ . .\main\include ;

. .\ . .\ extern\pthread−win32\include ;

. .\ . .\ tlu\include ;
. .\ . .\ extern\ZestSC1\windows 7\Inc ;
. .\ . .\ extern\libusb−win32−bin−1.2.6.0\ include

</AdditionalIncludeDirectories>
</ClCompile>
<Link>

<SubSystem>Console</SubSystem>
<GenerateDebugInformation>true</GenerateDebugInformation>
<AdditionalLibraryDirectories>

. .\ . .\ extern\libusb−win32−bin−1.2.6.0\ l ib\msvc\ ;
. .\ . .\ extern\ZestSC1\windows 7\ l ib\x86\

</AdditionalLibraryDirectories>
<AdditionalDependencies>

ZestSC1. l ib ; libusb . l ib ; kernel32 . l ib ; user32 . l ib ; gdi32 . l ib ; winspool . l ib ; comdlg32 . l ib ;
advapi32 . l ib ; shell32 . l ib ; ole32 . l ib ; oleaut32 . l ib ; uuid . l ib ;odbc32 . l ib ;
odbccp32 . l ib ;%(AdditionalDependencies)

</AdditionalDependencies>
</Link>

</ItemDefinitionGroup>

An Item definition Group is the place where you define your items. One can compare
Items to a struct in C++; it is an object that contains different types of information.
The Condition statement works like an IF in C++.

73

EUDAQ User ManualB. Introduction to the build system and project files on Windows

In this article you can find all the possibilities you have: http://msdn.microsoft.

com/de-de/library/7szfhaft.aspx In the next line you are defining an item called
“CLCompile” and you give it the some attributes like “PreprocessorDefinitions” or
“AdditionalIncludeDirectories”. This Object contains all the information that gets sent
to the compiler. That means all the compiler flags are set here. The actual files are
included later in the project file. So for now you have only defined how you want to
compile your files but not what files you want to compile. AdditionalIncludeDirectories
does exactly what you think it does. It understands all relative paths and path with
environment variables exactly as it should. Next thing is “PreprocessorDefinitions”. It
also works exactly as you think it does. That means you can either define just names for
your #ifdef statements in the code or you can define macros like

<PreprocessorDefinitions>
SOMEVALUE=3;
WIN32;
DEBUG;
CONSOLE;
%(PreprocessorDefinitions)

</PreprocessorDefinitions>

Then you can call in your code SOMEVALUE and it will be 3. I do not know if it is
possible to define macro function like

#define x_square(x) x*x.

<AdditionalDependencies>
$(myFancyLibPath)\∗. l ib ;
odbccp32 . l ib ;%(AdditionalDependencies)

</AdditionalDependencies>

And it will link against all *.lib files in this directory.
Next thing you need to know is where to put your files you want to compile. Some-
where below the ItemDefinitionGroup there is an ItemGroup which contains the Include
statements. It looks like this:

<ItemGroup>
<ClCompile Include=”src\someFile . cc”/>
<ClCompile Include=”src\someOtherFile . cc”/>
. . .
<ClCompile Include=”src \∗.cpp”/>

. . .
</ItemGroup>

Here you can either put individual files or groups of files in. But be careful that you
don’t include the same file twice. There is also an ItemGroup which contains the include
files. This one seems to be more important for the IDE of VS so that it shows the header
files in the Solution Explorer.

74

http://msdn.microsoft.com/de-de/library/7szfhaft.aspx
http://msdn.microsoft.com/de-de/library/7szfhaft.aspx

EUDAQ User ManualB. Introduction to the build system and project files on Windows

A typical use case is that you wrote your own Data Converter Plugin. This file needs to
be mentioned here!
What you won’t find in the project file is the section that passes the files to the compiler.
This part is hidden behind the following import statement:

<Import Project=”$(VCTargetsPath)\Microsoft .Cpp. targets”/>

It is usually not required to modify this file. But if you want to view it you can find it in
this folder:

C:\Program Files (x86)\MSBuild\Microsoft.Cpp\v4.0\

This file is written neither to be very clear nor understandable, so better check out the
documentation pages such as:
http://msdn.microsoft.com/en-us/library/dd293626.aspx

B.3. Known Problems

• The environment variables are pulled in as properties therefore they can be over-
written in the project file or in the “vcxproj.user” file. So if for example your
QT Project won’t compile and keeps complaining about not finding the correct
directory make sure you are not overwriting the QTDIR environment Variable with
a Property.

75

http://msdn.microsoft.com/en-us/library/dd293626.aspx

EUDAQ User Manual C. Online Monitor Configuration Settings

C. Online Monitor Configuration Settings

C.1. Configuration Sections Overview

we have the following Section Keywords, to be put in [].

• [General]

• [Correlations]

• [Clusterizer]

• [HotPixelFinder]

• [Mimosa26]

C.2. Configuration options in [General]

SnapShotDir string
Stores the location of snapshots from the online monitor

SnapShotFormat string
Which Format to use for the snapshots, e.g. ”.pdf”

C.3. Configuration options in [Correlations]

MinClusterSize int
Which minimum cluster size to use for the correlation plots

DisablePlanes int,int,int
List of planes to disbale, separates by a ”,”

C.4. Configuration options in [Clusterizer]

C.5. Configuration options in [HotPixelFinder]

HotPixelCut float
Cut above which a pixel is considered ”hot”

C.6. Configuration options in [Mimosa26]

Mimosa26 max sections int
Number of section of the Mimosa 26 chip, default is 4

Mimosa26 section boundary int
Number of pixels in a Mimosa26 section, default is 288

76

EUDAQ User Manual C. Online Monitor Configuration Settings

C.7. Configuration Example

[General]

SnapShotDir = "/scratch/eudet/EUDAQ/bin/"

SnapShotFormat = ".pdf"

[Correlations]

MinClusterSize = 2

DisablePlanes = 2,3

[Clusterizer]

[HotPixelFinder]

HotPixelCut = 0.05

[Mimosa26]

Mimosa26_max_sections = 4

Mimosa26_section_boundary = 288

77

EUDAQ User Manual Glossary

Glossary

BORE beginning-of-run-event, basically a run header.

CDS correlated double sampling, when two frames are acquired, one before and one
after the trigger, and then subtracted to get the actual signal.

DUT device under test.

EORE end-of-run-event, basically a run trailer.

EUDRB teawt.

FSM finite-state machine.

LCIO Linear Collider I/O, the file format used by the analysis software.

NI the National Instrument system, for reading out the Mimosa 26 sensors.

TLU the Trigger Logic Unit.

Acknowledgements

This project receives funding from the European Unions Horizon 2020 Research and
Innovation programme under Grant Agreement no. 654168. The support is gratefully
acknowledged. Disclaimer : The information herein only reflects the views of its authors
and not those of the European Commission and no warranty expressed or implied is
made with regard to such information or its use.
Before, this work was supported by the Commission of the European Communities under
the 6th Framework Programme “Structuring the European Research Area,” contract
number RII3–026126, and received funding from the European Commission under the
FP7 Research Infrastructures project AIDA, grant agreement no. 262025.

References

[1] J. Dreyling-Eschweiler and H. Jansen, “EUDET-type beam telescopes”, Online
Wiki.
URL https://telescopes.desy.de/

[2] P. Roloff, “The EUDET high resolution pixel telescope”, Nucl. Instrum. Meth.,
A604, (2009), 265–268.

[3] H. Jansen, S. Spannagel, J. Behr, A. Bulgheroni, G. Claus et al., “Performance of
the EUDET-type beam telescopes”, EPJ Techniques and Instrumentation, 3 (1),
(2016), 7.
URL http://dx.doi.org/10.1140/epjti/s40485-016-0033-2

[4] A. Bulgheroni, “EUTelescope, the JRA1 tracking and reconstruction software: a
status report”, EUDET-Memo-2008-48.
URL http://www.eudet.org/e26/e28/e615/e835/eudet-memo-2008-48.pdf

78

https://telescopes.desy.de/
http://dx.doi.org/10.1140/epjti/s40485-016-0033-2
http://www.eudet.org/e26/e28/e615/e835/eudet-memo-2008-48.pdf

EUDAQ User Manual References

[5] S. Spannagel, “Test Beam Measurements for the Upgrade of the CMS Pixel Detector
and Measurement of the Top Quark Mass from Differential Cross Sections”, Ph.D.
thesis, U. Hamburg, Dept. Phys., Hamburg (2016).
URL http://bib-pubdb1.desy.de/search?cc=Publication+Database&of=hd&

p=reportnumber:DESY-THESIS-2016-010

[6] GitHub, “Mastering Markdown”, GitHub.
URL https://guides.github.com/features/mastering-markdown/

[7] D. G. Cussans, “Description of the JRA1 Trigger Logic Unit (TLU), v0.2c”,
EUDET-Memo-2009-04.
URL http://www.eudet.org/e26/e28/e42441/e57298/EUDET-MEMO-2009-04.

pdf

[8] Git, “Git – local-branching-on-the-cheap”, Online Article.
URL https://git-scm.com/

[9] E. Developers, “EUDAQ code on GutHub”, GitHub.
URL https://github.com/eudaq/eudaq

[10] J. Dreyling-Eschweiler and H. Jansen, “EUDET-type beam telescopes”, Online Wiki
- User Manual.
URL https://telescopes.desy.de/User_manual

[11] D. Shirokova, “Software Development for a common DAQ at test”, DESY Summer-
studetnts.

[12] E. Configurations, “EUDAQ configurations files and scripts on GitHub”, GitHub.
URL https://github.com/eudaq/eudaq-configuration

79

http://bib-pubdb1.desy.de/search?cc=Publication+Database&of=hd&p=reportnumber:DESY-THESIS-2016-010
http://bib-pubdb1.desy.de/search?cc=Publication+Database&of=hd&p=reportnumber:DESY-THESIS-2016-010
https://guides.github.com/features/mastering-markdown/
http://www.eudet.org/e26/e28/e42441/e57298/EUDET-MEMO-2009-04.pdf
http://www.eudet.org/e26/e28/e42441/e57298/EUDET-MEMO-2009-04.pdf
https://git-scm.com/
https://github.com/eudaq/eudaq
https://telescopes.desy.de/User_manual
https://github.com/eudaq/eudaq-configuration

	License
	Introduction
	Architecture
	Directory and File Structure

	Installing EUDAQ
	Installation of prerequisites
	Download the source code from GitHub
	Configuration via CMake
	Compilation

	Running EUDAQ
	Preparation
	Processes
	Running the DAQ
	Other Utilities

	Writing a Producer
	Configuration
	Receiving Commands
	Sending Data and the RawDataEvent class
	Log Messages
	Interfacing Python-Code via the PyProducer Interface

	Data Conversion
	StandardEvent and StandardPlane
	LCIO and LCEvent
	DataConverterPlugin

	Other Parts of the Framework
	FileWriter
	FileReader
	PluginManager
	OptionParser
	Timer
	Utils

	Reporting Issues
	Developing and Contributing to EUDAQ
	Regression Testing
	Commiting Code to the Main Repository

	Source Code
	Example Config File
	Example Producer
	Example DataConverterPlugin
	Example Reader

	Introduction to the build system and project files on Windows
	MSBUILD
	Project Files
	Known Problems

	Online Monitor Configuration Settings
	Configuration Sections Overview
	Configuration options in [General]
	Configuration options in [Correlations]
	Configuration options in [Clusterizer]
	Configuration options in [HotPixelFinder]
	Configuration options in [Mimosa26]
	Configuration Example

	Glossary

